On second order Hamiltonian systems
Smetanová, Dana
Archivum Mathematicum, Tome 042 (2006), p. 341-347 / Harvested from Czech Digital Mathematics Library

The aim of the paper is to announce some recent results concerning Hamiltonian theory. The case of second order Euler–Lagrange form non-affine in the second derivatives is studied. Its related second order Hamiltonian systems and geometrical correspondence between solutions of Hamilton and Euler–Lagrange equations are found.

Publié le : 2006-01-01
Classification:  37J05,  58E30,  70S05
@article{108040,
     author = {Dana Smetanov\'a},
     title = {On second order Hamiltonian systems},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {341-347},
     zbl = {1164.35304},
     mrnumber = {2322420},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108040}
}
Smetanová, Dana. On second order Hamiltonian systems. Archivum Mathematicum, Tome 042 (2006) pp. 341-347. http://gdmltest.u-ga.fr/item/108040/

Krupka D. Some geometric aspects of variational problems in fibered manifolds, Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973), 1–65. (1973)

Krupková O. Hamiltonian field theory, J. Geom. Phys. 43 (2002), 93–132. | MR 1919207 | Zbl 1016.37033

Krupková O. Hamiltonian field theory revisited: A geometric approach to regularity, in: Steps in Differential Geometry, Proc. of the Coll. on Differential Geometry, Debrecen 2000 (University of Debrecen, Debrecen, 2001), 187–207. | MR 1859298 | Zbl 0980.35009

Krupková O. Higher-order Hamiltonian field theory, Paper in preparation.

Saunders D. J. The geometry of jets bundles, Cambridge University Press, Cambridge, 1989. (1989) | MR 0989588

Shadwick W. F. The Hamiltonian formulation of regular $r$-th order Lagrangian field theories, Lett. Math. Phys. 6 (1982), 409–416. (1982) | MR 0685846