A brief review of supersymmetric non-linear sigma models and generalized complex geometry
Lindström, Ulf
Archivum Mathematicum, Tome 042 (2006), p. 307-318 / Harvested from Czech Digital Mathematics Library

This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma models in the Hamiltonian formulation.

Publié le : 2006-01-01
Classification:  53C25,  53C80,  81T60
@article{108037,
     author = {Ulf Lindstr\"om},
     title = {A brief review of supersymmetric non-linear sigma models and generalized complex geometry},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {307-318},
     zbl = {1164.53400},
     mrnumber = {2322417},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108037}
}
Lindström, Ulf. A brief review of supersymmetric non-linear sigma models and generalized complex geometry. Archivum Mathematicum, Tome 042 (2006) pp. 307-318. http://gdmltest.u-ga.fr/item/108037/

Albertsson C.; Lindström U.; Zabzine M. $N = 1$ supersymmetric sigma model with boundaries. I, Comm. Math. Phys. 233, 403 (2003) [arXiv:hep-th/0111161]. | MR 1962116 | Zbl 1028.81044

Albertsson C.; Lindström U.; Zabzine M. $N = 1$ supersymmetric sigma model with boundaries. II, Nuclear Phys. B 678, 295 (2004) [arXiv:hep-th/0202069]. | MR 2022994 | Zbl 1097.81548

Alekseev A.; Strobl T. Current algebra and differential geometry, JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. | MR 2151966

Alvarez-Gaumé L.; Freedman D. Z. Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model, Comm. Math. Phys. 80, 443 (1981) (1981) | MR 0626710

Bergamin L. Generalized complex geometry and the Poisson sigma model, Modern Phys. Lett. A 20, 985 (2005) [arXiv:hep-th/0409283]. | MR 2148015 | Zbl 1067.81046

Bredthauer A.; Lindström U.; Persson J.; Zabzine M. Generalized Kaehler geometry from supersymmetric sigma models, arXiv:hep-th/0603130. | MR 2260375 | Zbl 1105.53053

Bredthauer A.; Lindström U.; Persson J. First-order supersymmetric sigma models and target space geometry, JHEP 0601, 144 (2006) [arXiv:hep-th/0508228]. | MR 2200293

Buscher T.; Lindström U.; Roček M. New supersymmetric sigma models with Wess-Zumino terms, Phys. Lett. B202, 94 (1988). (1988) | MR 0930852

Calvo I. Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry, arXiv:hep-th/0511179. | MR 2247462 | Zbl 1105.53063

Gates S. J.; Hull C. M.; Roček M. Twisted multiplets and new supersymmetric nonlinear sigma models, Nuclear Phys. B248 (1984) 157. (1984)

Grisaru M. T.; Massar M.; Sevrin A.; Troost J. The quantum geometry of $N = (2,2)$ non-linear sigma-models, Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218]. (1997) | MR 1603804

Gualtieri M. Generalized complex geometry, Oxford University DPhil thesis, [arXiv:math. DG/0401221]. | MR 2811595 | Zbl 1235.32020

Hitchin N. Generalized Calabi-Yau manifolds, Quart. J. Math. 54, No. 3 (2003), 281–308, [arXiv:math.DG/0209099]. | MR 2013140 | Zbl 1076.32019

Hitchin N. Instantons, Poisson structures and generalized Kähler geometry, [arXiv:math. DG/0503432]. | MR 2217300 | Zbl 1110.53056

Howe P. S.; Sierra G. Two-dimensional supersymmetric nonlinear sigma models with torsion, Phys. Lett. B148, 451 (1984). (1984) | MR 0769268

Howe P. S.; Lindström U.; Wulff L. Superstrings with boundary fermions, JHEP 0508, 041 (2005) [arXiv:hep-th/0505067]. | MR 2165805

Howe P. S.; Lindström U.; Stojevic V. Special holonomy sigma models with boundaries, JHEP 0601, 159 (2006) [arXiv:hep-th/0507035]. | MR 2200283

Ivanov I. T.; Kim B. B.; Roček M. Complex structures, duality and WZW models in extended superspace, Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063]. (1995) | MR 1315282

Kapustin A. Topological strings on noncommutative manifolds, Int. J. Geom. Methods Mod. Phys. 1 (2004) 49 [arXiv:hep-th/0310057]. | MR 2055289 | Zbl 1065.81108

Kapustin A.; Li Y. Topological sigma-models with H-flux and twisted generalized complex manifolds, arXiv:hep-th/0407249. | MR 2322555 | Zbl 1192.81310

Lindström U.; Rocek M.; Van Nieuwenhuizen P. Consistent boundary conditions for open strings, Nuclear Phys. B 662, 147 (2003) [arXiv:hep-th/0211266]. | MR 1984375 | Zbl 1027.83027

Lindström U.; Zabzine M. N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models, JHEP 0302, 006 (2003) [arXiv:hep-th/0209098]. | MR 1976901

Lindström U. Generalized $N = (2,2)$ supersymmetric non-linear sigma models, Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100]. | MR 2065031

Lindström U.; Minasian R.; Tomasiello A.; Zabzine M. Generalized complex manifolds and supersymmetry, Comm. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085]. | MR 2163575 | Zbl 1118.53048

Lindström U.; Roček M.; Von Unge R.; Zabzine M. Generalized Kaehler geometry and manifest $N = (2,2)$ supersymmetric nonlinear sigma-models, JHEP 0507 (2005) 067 [arXiv:hep-th/0411186]. | MR 2163246

Lindström U.; Rocek M.; Von Unge R.; Zabzine M. Generalized Kaehler manifolds and off-shell supersymmetry, arXiv:hep-th/0512164. | Zbl 1114.81077

Lyakhovich S.; Zabzine M. Poisson geometry of sigma models with extended supersymmetry, Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043]. | MR 1948542 | Zbl 0999.81044

Pestun V. Topological strings in generalized complex space, arXiv:hep-th/0603145. | MR 2322532 | Zbl 1154.81024

Sevrin A.; Troost J. Off-shell formulation of $N = 2$ non-linear sigma-models, Nuclear Phys. B492 (1997) 623 [arXiv:hep-th/9610102]. (1997) | MR 1456119

Zabzine M. Hamiltonian perspective on generalized complex structure, arXiv:hep-th/0502137, to appear in Comm. Math. Phys. | MR 2211820 | Zbl 1104.53077

Zucchini R. A sigma model field theoretic realization of Hitchin’s generalized complex geometry, JHEP 0411 (2004) 045 [arXiv:hep-th/0409181]. | MR 2119918

Zumino B. Supersymmetry and Kahler manifolds, Phys. Lett. B 87, 203 (1979). (1979)