Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.
@article{108034, author = {Svatopluk Kr\'ysl}, title = {Symplectic spinor valued forms and invariant operators acting between them}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {279-290}, zbl = {1164.58320}, mrnumber = {2322414}, language = {en}, url = {http://dml.mathdoc.fr/item/108034} }
Krýsl, Svatopluk. Symplectic spinor valued forms and invariant operators acting between them. Archivum Mathematicum, Tome 042 (2006) pp. 279-290. http://gdmltest.u-ga.fr/item/108034/
General Representation theory of real reductive Lie groups in Bailey, T. N.: Representation Theory and Automorphic Forms, Edinburgh (1996), 61–72. (1996) | MR 1476492
Simple $C_n$-modules with multiplicities 1 and application, Canad. J. Phys. 72 (1994), 326–335. (1994) | MR 1297597
On modules of bounded multiplicities for the symplectic algebra, Trans. Amer. Math. Soc. 351, No. 8 (1999), 3413–3431. (1999) | MR 1615943
Clifford Algebra and Spinor-valued Functions, Math. Appl., Vol. 53, 1992. (1992)
Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 2003. | Zbl 1173.22001
Covariant quantum mechanics of the superstring, Phys. Lett. B 225 (1989), 57–65. (1989) | MR 1006387
Symplectic Dirac Operators on Kähler Manifolds, Math. Nachr. 211 (2000), 37–62. | MR 1743488
Finite and infinite dimensional modules for semisimple Lie algebras, Lie theories and their applications, Lie Theor. Appl., Proc. Ann. Semin. Can. Math. Congr., Kingston 1977 (1978), 1–64. (1977) | MR 0500456
Modular invariant representations of infinite dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA 85, No. 14 (1988), 4956–4960. (1988) | MR 0949675 | Zbl 0652.17010
Dirac operator in parabolic contact symplectic geometry, Ph.D. thesis, Charles University Prague, Prague, 2001.
On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44, No. 1 (1978), 1–49. (1978) | MR 0463359
Eine Fouriertransformation für symplektische Spinoren und Anwendungen in der Quantisierung, Diploma Thesis, Technische Universität Berlin, Berlin, 2000.
On the Tensor Product of a Finite and an Infinite Dimensional Representations, J. Funct. Anal. 20 (1975), 257–285. (1975) | MR 0414796
Symplectic Spinors, Sympos. Math. XIV (1974), 139–152. (1974) | MR 0400304 | Zbl 0321.58015
Invariant differential operators for contact projective geometries, Ph.D. thesis, Charles University Prague, Prague, 2004.
Decomposition of the tensor product of the defining representation and a higher symplectic spinor module over $\mathfrak{sp}(2n,\mathbb{C})$, to appear in J. Lie Theory 17, No. 1 (2007), 63–72. | MR 2286881
Symplectic Dirac-Kähler Fields, J. Math. Phys. 40 (1999), 5593–5640; electronically available at hep-th/9910085. (1999) | MR 1722329 | Zbl 0968.81037