Symplectic spinor valued forms and invariant operators acting between them
Krýsl, Svatopluk
Archivum Mathematicum, Tome 042 (2006), p. 279-290 / Harvested from Czech Digital Mathematics Library

Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.

Publié le : 2006-01-01
Classification:  53C27,  53D05,  58J60
@article{108034,
     author = {Svatopluk Kr\'ysl},
     title = {Symplectic spinor valued forms and invariant operators acting between them},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {279-290},
     zbl = {1164.58320},
     mrnumber = {2322414},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108034}
}
Krýsl, Svatopluk. Symplectic spinor valued forms and invariant operators acting between them. Archivum Mathematicum, Tome 042 (2006) pp. 279-290. http://gdmltest.u-ga.fr/item/108034/

Baldoni W. General Representation theory of real reductive Lie groups in Bailey, T. N.: Representation Theory and Automorphic Forms, Edinburgh (1996), 61–72. (1996) | MR 1476492

Britten D. J.; Hooper J.; Lemire F. W. Simple $C_n$-modules with multiplicities 1 and application, Canad. J. Phys. 72 (1994), 326–335. (1994) | MR 1297597

Britten D. J.; Lemire F. W. On modules of bounded multiplicities for the symplectic algebra, Trans. Amer. Math. Soc. 351, No. 8 (1999), 3413–3431. (1999) | MR 1615943

Delanghe R.; Sommen F.; Souèek V. Clifford Algebra and Spinor-valued Functions, Math. Appl., Vol. 53, 1992. (1992)

Goodman R.; Wallach N. Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 2003. | Zbl 1173.22001

Green M. B.; Hull C. M. Covariant quantum mechanics of the superstring, Phys. Lett. B 225 (1989), 57–65. (1989) | MR 1006387

Habermann K. Symplectic Dirac Operators on Kähler Manifolds, Math. Nachr. 211 (2000), 37–62. | MR 1743488

Humphreys J. E. Finite and infinite dimensional modules for semisimple Lie algebras, Lie theories and their applications, Lie Theor. Appl., Proc. Ann. Semin. Can. Math. Congr., Kingston 1977 (1978), 1–64. (1977) | MR 0500456

Kac V. G.; Wakimoto M. Modular invariant representations of infinite dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA 85, No. 14 (1988), 4956–4960. (1988) | MR 0949675 | Zbl 0652.17010

Kadlčáková L. Dirac operator in parabolic contact symplectic geometry, Ph.D. thesis, Charles University Prague, Prague, 2001.

Kashiwara M.; Vergne M. On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44, No. 1 (1978), 1–49. (1978) | MR 0463359

Klein A. Eine Fouriertransformation für symplektische Spinoren und Anwendungen in der Quantisierung, Diploma Thesis, Technische Universität Berlin, Berlin, 2000.

Kostant B. On the Tensor Product of a Finite and an Infinite Dimensional Representations, J. Funct. Anal. 20 (1975), 257–285. (1975) | MR 0414796

Kostant B. Symplectic Spinors, Sympos. Math. XIV (1974), 139–152. (1974) | MR 0400304 | Zbl 0321.58015

Krýsl S. Invariant differential operators for contact projective geometries, Ph.D. thesis, Charles University Prague, Prague, 2004.

Krýsl S. Decomposition of the tensor product of the defining representation and a higher symplectic spinor module over $\mathfrak{sp}(2n,\mathbb{C})$, to appear in J. Lie Theory 17, No. 1 (2007), 63–72. | MR 2286881

Reuter M. Symplectic Dirac-Kähler Fields, J. Math. Phys. 40 (1999), 5593–5640; electronically available at hep-th/9910085. (1999) | MR 1722329 | Zbl 0968.81037