Locally exact complexes of invariant differential operators are constructed on the homogeneous model for a parabolic geometry for the even orthogonal group. The tool used for the construction is the Penrose transform developed by R. Baston and M. Eastwood. Complexes constructed here belong to the singular infinitesimal character.
@article{108033, author = {Luk\'a\v s Krump and Vladim\'\i r Sou\v cek}, title = {Singular BGG sequences for the even orthogonal case}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {267-278}, zbl = {1164.58317}, mrnumber = {2322413}, language = {en}, url = {http://dml.mathdoc.fr/item/108033} }
Krump, Lukáš; Souček, Vladimír. Singular BGG sequences for the even orthogonal case. Archivum Mathematicum, Tome 042 (2006) pp. 267-278. http://gdmltest.u-ga.fr/item/108033/
Quaternionic complexes, J. Geom. Phys. 8 (1992), 29–52. (1992) | MR 1165872 | Zbl 0764.53022
Penrose transform; Its interaction with representation theory, Clarendon Press, Oxford, 1989. (1989) | MR 1038279 | Zbl 0726.58004
Differential invariants and curved Bernstein–Gelfand–Gelfand sequences, J. Reine angew. Math. 537 (2001), 67–103. | MR 1856258 | Zbl 0985.58002
Two constructions with parabolic geometries, preprint, arXiv:math.DG/0504389 | MR 2287124 | Zbl 1120.53013
Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 3 (2000), 453–505. | MR 1795487 | Zbl 0996.53023
Bernstein-Gelfand-Gelfand sequences, Ann. of Math. (2) 154 1 (2001), 97–113. | MR 1847589
Analysis of Dirac systems and computational algebra, Birkhäuser, Basel, 2004. | MR 2089988 | Zbl 1064.30049
Generalized Verma module homomorphisms in singular character, submitted to Proc. of the Winter School ’Geometry and Physics’, Srni, 2006. | MR 2322409 | Zbl 1164.22310
Construction of BGG sequences for AHS structures, Comment. Math. Univ. Carolin. 42 1 (2001), 31–52, | MR 1825371 | Zbl 1054.53071
Hasse diagrams for parabolic geometries, Proc. of ’The 22nd Winter School ’Geometry and Physics’, Srní 2002, Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003). | MR 1982440 | Zbl 1047.53014
Complex analysis and complexes of differential operators, LNM 950, Springer-Verlag, Berlin, 1980. (1980) | MR 0672785
Differential geometry, Grad. Texts in Math. 166 (1997). (1997) | MR 1453120 | Zbl 0876.53001
Parabolic geometries, Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.
The BGG diagram for contact orthogonal geometry of even dimension, Acta Univ. Carolin. Math. Phys. 45 (2004), 79–96. | MR 2109696 | Zbl 1138.17310