The local equivalence problem in CR geometry
Kolář, Martin
Archivum Mathematicum, Tome 042 (2006), p. 253-266 / Harvested from Czech Digital Mathematics Library

This article is dedicated to the centenary of the local CR equivalence problem, formulated by Henri Poincaré in 1907. The first part gives an account of Poincaré’s heuristic counting arguments, suggesting existence of infinitely many local CR invariants. Then we sketch the beautiful completion of Poincaré’s approach to the problem in the work of Chern and Moser on Levi nondegenerate hypersurfaces. The last part is an overview of recent progress in solving the problem on Levi degenerate manifolds.

Publié le : 2006-01-01
Classification:  32V40
@article{108032,
     author = {Martin Kol\'a\v r},
     title = {The local equivalence problem in CR geometry},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {253-266},
     zbl = {1164.32307},
     mrnumber = {2322412},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108032}
}
Kolář, Martin. The local equivalence problem in CR geometry. Archivum Mathematicum, Tome 042 (2006) pp. 253-266. http://gdmltest.u-ga.fr/item/108032/

Baouendi M. S.; Ebenfelt P.; Rothschild L. P. Convergence and finite determination of formal CR mappings, J. Amer. Math. Soc. 13 (2000), 697–723. | MR 1775734 | Zbl 0958.32033

Baouendi M. S.; Ebenfelt P.; Rothschild L. P. Local geometric properties of real submanifolds in complex space, Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336. | MR 1754643

Barletta E.; Bedford E. Existence of proper mappings from domains in $\mathbb{C}^2$ , Indiana Univ. Math. J. 2 (1990), 315–338. (1990) | MR 1089041

Beals M.; Fefferman C.; Grossman R. Strictly pseudoconvex domains in $\mathbb{C}^n$, Bull. Amer. Math. Soc. 8 (1983), 125–322. (1983) | MR 0684898

Beloshapka V. K. On the dimension of the group of automorphisms of an analytic hypersurface, Math. USSR, Izv. 14 (1980), 223–245. (1980) | MR 0534592 | Zbl 0456.32015

Beloshapka V. K.; Ezhov V. V. Normal forms and model hypersurfaces in $\mathbb{C}^2$, preprint.

Cartan E. Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I, Ann. Math. Pura Appl. 11 (1932), 17–90. (1932)

Cartan E. Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354. (1932) | MR 1556687

Chern S. S.; Moser J. Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. (1974) | MR 0425155

D’Angelo J. P. Orders od contact, real hypersurfaces and applications, Ann. of Math. (2) 115 (1982), 615–637. (1982) | MR 0657241

Ebenfelt P. New invariant tensors in CR structures and a normal form for real hypersurfaces at a generic Levi degeneracy, J. Differential Geom. 50 (1998), 207–247. (1998) | MR 1684982 | Zbl 0945.32020

Ebenfelt P.; Lamel B.; Zaitsev D. Degenerate real hypersurfaces in $\mathbb{C}2$ with few automorphisms, arXiv:math.CV/0605540.

Ebenfelt P.; Huang X.; Zaitsev D. The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics, Amer. J. Math. 127 (2005), 169–191. (191.) | MR 2115664

Fefferman C. Parabolic invariant theory in complex analysis, Adv. Math. 31 (1979), 131–262. (1979) | MR 0526424 | Zbl 0444.32013

Isaev A. V.; Krantz S. G. Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1) (1999), 1–38. (1999) | MR 1706680 | Zbl 1040.32019

Jacobowitz H. An introduction to CR structures, Math. Surveys Monogr. 32, AMS 1990. (1990) | MR 1067341 | Zbl 0712.32001

Juhlin R. , PhD-thesis, UCSD | Zbl 1219.32020

Kohn J. J. Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523–542. (1972) | MR 0322365

Kolář M. Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$, Math. Res. Lett. 12 (2005), 523–542. | MR 2189248

Kolář M. Local symmetries of finite type hypersurfaces in $\mathbb{C}^2$, Sci. China A 48 (2006), 1633–1641. | MR 2288220

Kowalski R. A hypersurface in $\mathbb{C}^2$ whose stability group is not determined by 2-jets, Proc. Amer. Math. Soc. 130 (12) (2002), 3679–3686. (electronic) | MR 1920048

Kruzhilin N. G.; Loboda A. V. Linearization of local automorphisms of pseudoconvex surfaces, Dokl. Akad. Nauk SSSR 271 (1983), 280–282. (1983) | MR 0718188 | Zbl 0582.32040

Poincaré H. Les fonctions analytique de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23 (1907), 185–220. (1907)

Segre B. Intorno al problem di Poincaré della rappresentazione pseudo-conform, Rend. Accad. Lincei 13 (1931), 676–683. (1931)

Stanton N. A normal form for rigid hypersurfaces in $\mathbb{C}^2$ , Amer. J. Math. 113 (1991), 877–910. (1991) | MR 1129296

Vitushkin A. G. Real analytic hypersurfaces in complex manifolds, Russ. Math. Surv. 40 (1985), 1–35. (1985) | MR 0786085 | Zbl 0588.32025

Webster S. M. On the Moser normal form at a non-umbilic point, Math. Ann. 233 (1978), 97–102. (1978) | MR 0486511 | Zbl 0358.32013

Wells R. O., Jr. The Cauchy-Riemann equations and differential geometry, Bull. Amer. Math. Soc. (N.S.) 6 (2) (1982), 187–199. (1982) | MR 0640945 | Zbl 0496.32012

Wong P. A construction of normal forms for weakly pseudoconvex CR manifolds in $\mathbb{C}^2$, Invent. Math. 69 (1982), 311–329. (1982) | MR 0674409

Zaitsev D. Unique determination of local CR-maps by their jets: A survey, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Suppl. 13 (2002), 295–305. | MR 1984108 | Zbl 1098.32018