In ( Dušek, Z., Kowalski, O. and Nikčević, S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78.), the present authors and S. Nikčević constructed the 2-parameter family of invariant Riemannian metrics on the homogeneous manifolds $M=[{\rm SO}(5)\times {\rm SO}(2)]/{\rm U}(2)$ and $M=[{\rm SO}(4,1)\times {\rm SO}(2)]/{\rm U}(2)$. They proved that, for the open dense subset of this family, the corresponding Riemannian manifolds are g.o. manifolds which are not naturally reductive. Now we are going to investigate the remaining metrics (in the compact case).
@article{108028, author = {Zden\v ek Du\v sek and Old\v rich Kowalski}, title = {Geodesic graphs on special 7-dimensional g.o. manifolds}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {213-227}, zbl = {1164.53361}, mrnumber = {2322408}, language = {en}, url = {http://dml.mathdoc.fr/item/108028} }
Dušek, Zdeněk; Kowalski, Oldřich. Geodesic graphs on special 7-dimensional g.o. manifolds. Archivum Mathematicum, Tome 042 (2006) pp. 213-227. http://gdmltest.u-ga.fr/item/108028/
Explicit geodesic graphs on some H-type groups, Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. | MR 1972426 | Zbl 1025.53019
Geodesic graphs on the 13-dimensional group of Heisenberg type, Math. Nachr., 254-255 (2003), 87–96. | MR 1983957
New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78. | MR 2067459 | Zbl 1050.22011
Foundations of differential geometry - I, Interscience Publishers, New York, 1963. (1963)
Foundations of differential geometry - II, Interscience Publishers, New York, 1969. (1969)
On geodesic graphs of Riemannian g.o. spaces, Arch. Math. 73 (1999), 223–234. (1999) | MR 1705019
On geodesic graphs of Riemannian g.o. spaces - Appendix, Arch. Math. 79 (2002), 158–160. | MR 1924152
Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. B(7)5 (1991), 189–246. (1991) | MR 1110676
Sur la connection naturelle à torsion nulle, Acta Sci. Math. (Szeged) 38 (1976), 383–398. (1976) | MR 0431042