Lectures on generalized complex geometry and supersymmetry
Zabzine, Maxim
Archivum Mathematicum, Tome 042 (2006), p. 119-146 / Harvested from Czech Digital Mathematics Library

These are the lecture notes from the 26th Winter School “Geometry and Physics", Czech Republic, Srní, January 14 – 21, 2006. These lectures are an introduction into the realm of generalized geometry based on the tangent plus the cotangent bundle. In particular we discuss the relation of this geometry to physics, namely to two-dimensional field theories. We explain in detail the relation between generalized complex geometry and supersymmetry. We briefly review the generalized Kähler and generalized Calabi-Yau manifolds and explain their appearance in physics.

Publié le : 2006-01-01
Classification:  53C15,  53D17
@article{108023,
     author = {Maxim Zabzine},
     title = {Lectures on generalized complex geometry and supersymmetry},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {119-146},
     zbl = {1164.53342},
     mrnumber = {2322403},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108023}
}
Zabzine, Maxim. Lectures on generalized complex geometry and supersymmetry. Archivum Mathematicum, Tome 042 (2006) pp. 119-146. http://gdmltest.u-ga.fr/item/108023/

Alekseev A.; Strobl T. Current algebra and differential geometry, JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. | MR 2151966

Bonechi F.; Zabzine M. , work in progress. | Zbl 1201.81097

Bredthauer A.; Lindström U.; Persson J.; Zabzine M. Generalized Kaehler geometry from supersymmetric sigma models, Lett. Math. Phys. 77 (2006), 291–308, arXiv:hep-th/0603130. | MR 2260375 | Zbl 1105.53053

Calvo I. Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry, Lett. Math. Phys. 77 (2006), 53–62, arXiv:hep-th/0511179. | MR 2247462 | Zbl 1105.53063

A. Cannas Da Silva A.; Weinstein A. Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, AMS, Providence, 1999. (1999)

Courant T.; Weinstein A. Beyond Poisson structures, In Action hamiltoniennes de groups. Troisième théorème de Lie (Lyon 1986), volume 27 of Travaux en Cours, 39–49, Hermann, Paris, 1988. (1986) | MR 0951168

Courant T. Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631–661. (1990) | MR 0998124 | Zbl 0850.70212

Gates S. J.; Hull C. M.; Roček M. Twisted multiplets and new supersymmetric nonlinear sigma models, Nucl. Phys. B 248 (1984), 157. (1984) | MR 0776369

Graña M. Flux compactifications in string theory: A comprehensive review, Phys. Rept. 423 (2006), 91 [arXiv:hep-th/0509003]. | MR 2193814

Gualtieri M. Generalized complex geometry, Oxford University DPhil thesis, arXiv: math.DG/0401221. | Zbl 1235.32020

Hitchin N. Generalized Calabi-Yau manifolds, Q. J. Math. 54 3 (2003), 281–308 [arXiv:math.DG/0209099]. | MR 2013140 | Zbl 1076.32019

Hitchin N. Instantons, Poisson structures and generalized Kähler geometry, Comm. Math. Phys. 265 (2006), 131–164, arXiv:math.DG/0503432. | MR 2217300 | Zbl 1110.53056

Hitchin N. Brackets, forms and invariant functionals, arXiv:math.DG/0508618. | MR 2253158 | Zbl 1113.53030

Kapustin A.; Li Y. Topological sigma-models with H-flux and twisted generalized complex manifolds, arXiv:hep-th/0407249. | MR 2322555 | Zbl 1192.81310

Li Y. On deformations of generalized complex structures: The generalized Calabi-Yau case, arXiv:hep-th/0508030.

Lindström U. A brief review of supersymmetric non-linear sigma models and generalized complex geometry, arXiv:hep-th/0603240. | MR 2322417 | Zbl 1164.53400

Lindström U.; Minasian R.; Tomasiello A.; Zabzine M. Generalized complex manifolds and supersymmetry, Comm. Math. Phys. 257 (2005), 235 [arXiv:hep-th/0405085]. | MR 2163575 | Zbl 1118.53048

Lindström U.; Roček M.; Von Unge R.; Zabzine M. Generalized Kaehler manifolds and off-shell supersymmetry, Comm. Math. Phys. 269 (2007), 833–849, arXiv:hep-th/0512164. | MR 2276362 | Zbl 1114.81077

Liu Z.-J.; Weinstein A.; Xu P. Manin triples for Lie bialgebroids, J. Differential Geom. 45 3 (1997), 547–574. (1997) | MR 1472888 | Zbl 0885.58030

Lyakhovich S.; Zabzine M. Poisson geometry of sigma models with extended supersymmetry, Phys. Lett. B 548 (2002), 243 [arXiv:hep-th/0210043]. | MR 1948542 | Zbl 0999.81044

Mackenzie K. C. H. General theory of Lie groupoids and Lie algebroids, Cambridge University Press, Cambridge, 2005. xxxviii+501 pp. | MR 2157566 | Zbl 1078.58011

Pestun V. Topological strings in generalized complex space, arXiv:hep-th/0603145. | MR 2322532 | Zbl 1154.81024

Roytenberg D. Courant algebroids, derived brackets and even symplectic supermanifolds, (PhD thesis), arXiv:math.DG/9910078. | MR 2699145

Sussmann H. Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171. (1973) | MR 0321133 | Zbl 0274.58002

Yano K.; Kon M. Structures of manifolds, Series in Pure Mathematics, Vol.3 World Scientific, Singapore, 1984 Yano, K., Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965. (1984) | MR 0794310

Zabzine M. Hamiltonian perspective on generalized complex structure, Comm. Math. Phys. 263 (2006), 711 [arXiv:hep-th/0502137]. | MR 2211820 | Zbl 1104.53077