The Srní lectures on non-integrable geometries with torsion
Agricola, Ilka
Archivum Mathematicum, Tome 042 (2006), p. 5-84 / Harvested from Czech Digital Mathematics Library

This review article intends to introduce the reader to non-integrable geometric structures on Riemannian manifolds and invariant metric connections with torsion, and to discuss recent aspects of mathematical physics—in particular superstring theory—where these naturally appear. Connections with skew-symmetric torsion are exhibited as one of the main tools to understand non-integrable geometries. To this aim a a series of key examples is presented and successively dealt with using the notions of intrinsic torsion and characteristic connection of a $G$-structure as unifying principles. The General Holonomy Principle bridges over to parallel objects, thus motivating the discussion of geometric stabilizers, with emphasis on spinors and differential forms. Several Weitzenböck formulas for Dirac operators associated with torsion connections enable us to discuss spinorial field equations, such as those governing the common sector of type II superstring theory. They also provide the link to Kostant’s cubic Dirac operator.

Publié le : 2006-01-01
Classification:  53C10,  53C25,  53C27,  53C29,  53D15,  58J60,  81T30
@article{108020,
     author = {Ilka Agricola},
     title = {The Srn\'\i\ lectures on non-integrable geometries with torsion},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {5-84},
     zbl = {1164.53300},
     mrnumber = {2322400},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108020}
}
Agricola, Ilka. The Srní lectures on non-integrable geometries with torsion. Archivum Mathematicum, Tome 042 (2006) pp. 5-84. http://gdmltest.u-ga.fr/item/108020/

E. Abbena An example of an almost Kähler manifold which is not Kählerian, Bolletino U. M. I. (6) 3 A (1984), 383–392. (1984) | MR 0769169 | Zbl 0559.53023

E. Abbena S. Gabiero S. Salamon Almost Hermitian geometry on six dimensional nilmanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) Vol. XXX (2001), 147–170. | MR 1882028

I. Agricola Connexions sur les espaces homogènes naturellement réductifs et leurs opérateurs de Dirac, C. R. Acad. Sci. Paris Sér. I 335 (2002), 43–46. | MR 1920993 | Zbl 1010.53024

I. Agricola Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory, Comm. Math. Phys. 232 (2003), 535–563. | MR 1952476 | Zbl 1032.53041

I. Agricola S. Chiossi A. Fino Solvmanifolds with integrable and non-integrable $G_2$-structures, math.DG/0510300, to appear in Differential Geom. Appl. | MR 2311729

I. Agricola; Th. Friedrich Global Analysis – Differential forms in Calculus, Geometry and Physics, Graduate Studies in Mathematics, Publications of the AMS 2002, Providence, Rhode Island 2002. | MR 1998826

I. Agricola; Th. Friedrich Killing spinors in supergravity with $4$-fluxes, Classical Quantum Gravity 20 (2003), 4707–4717. | MR 2019441 | Zbl 1045.83045

I. Agricola; Th. Friedrich On the holonomy of connections with skew-symmetric torsion, Math. Ann. 328 (2004), 711–748. | MR 2047649 | Zbl 1055.53031

I. Agricola; Th. Friedrich The Casimir operator of a metric connection with totally skew-symmetric torsion, J. Geom. Phys. 50 (2004), 188–204. | MR 2078225

I. Agricola; Th. Friedrich Geometric structures of vectorial type, math.DG/0509147, to appear in J. Geom. Phys. | MR 2252869 | Zbl 1106.53033

I. Agricola T. Friedrich P.-A. Nagy C. Puhle On the Ricci tensor in the common sector of type II string theory, Classical Quantum Gravity 22 (2005), 2569–2577. | MR 2153698

I. Agricola; Chr. Thier The geodesics of metric connections with vectorial torsion, Ann. Global Anal. Geom. 26 (2004), 321–332. | MR 2103403 | Zbl 1130.53029

D. V. Alekseevski Riemannian spaces with exceptional holonomy groups, Func. Anal. Prilozh. 2 (1968), 1–10. (1968) | MR 0231313

D. V. Alekseevsky S. Marchiafava M. Pontecorvo Compatible almost complex structures on quaternion Kähler manifolds, Ann. Global Anal. Geom. 16 (1998), 419–444. (1998) | MR 1648844

D. V. Alekseevsky V. Cortés Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type, Vinberg, Ernest (ed.), Lie groups and invariant theory. Providence, RI: American Mathematical Society 213 (AMS). Translations. Series 2. Adv. Math. Sci. 56 (2005), 33–62. | MR 2140713

V. Aleksiev G. Ganchev On the classification of the almost contact metric manifolds, Mathematics and education in mathematics, Proc. 15th Spring Conf., Sunny Beach/Bulg. 1986, 155–161. (1986) | MR 0872914

B. Alexandrov $Sp(n)U(1)$-connections with parallel totally skew-symmetric torsion, J. Geom. Phys. 57 (2006), 323–337, math.DG/0311248. | MR 2265474 | Zbl 1107.53012

B. Alexandrov On weak holonomy, Math. Scand. 96 (2005), 169–189. | MR 2153409 | Zbl 1079.53071

B. Alexandrov; Th. Friedrich N. Schoemann Almost Hermitian $6$-manifolds revisited, J. Geom. Phys. 53 (2005), 1–30. | MR 2102047

B. Alexandrov S. Ivanov Dirac operators on Hermitian spin surfaces, Ann. Global Anal. Geom. 18 (2000), 529–539. | MR 1800590

T. Ali $M$-theory on seven manifolds with $G$-fluxes, hep-th/0111220.

W. Ambrose; I. M. Singer A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428–443. (1953) | MR 0063739 | Zbl 0052.18002

W. Ambrose; I. M. Singer On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669. (1958) | MR 0102842 | Zbl 0134.17802

V. Apostolov T. Drăghici A. Moroianu A splitting theorem for Kähler manifolds whose Ricci tensors have constant eigenvalues, Internat. J. Math. 12 (2001), 769–789. | MR 1850671

V. Apostolov J. Armstrong T. Drăghici Local rigidity of certain classes of almost Kähler $4$-manifolds, Ann. Global Anal. Geom. 21 (2002), 151–176. | MR 1894944

J. Armstrong Almost Kähler geometry, Ph. D. Thesis, Oxford University, 1998. (1998)

M. Atiyah; W. Schmid A geometric construction for the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1–62. (1977) | MR 0463358

M. Atiyah; E. Witten $M$-theory dynamics on a manifold of $G_2$ holonomy, Adv. Theor. Math. Phys. 6 (2002), 1–106. | MR 1992874 | Zbl 1033.81065

J. E. D’Atri Geodesic spheres and symmetries in naturally reductive spaces, Michigan Math. J. 22 (1975), 71–76. (1975) | MR 0372786

J. E. D’Atri; W. Ziller Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18 (1979). (1979) | MR 0519928

Chr. Bär Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509–521. (1993) | MR 1224089

B. Banos A. F. Swann Potentials for hyper-Kähler metrics with torsion, Classical Quantum Gravity 21 (2004), 3127–3135. | MR 2072130

H. Baum; Th. Friedrich R. Grunewald I. Kath Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik, Band 124, Teubner-Verlag Stuttgart/Leipzig, 1991. (1991) | MR 1164864

K. Behrndt C. Jeschek Fluxes in $M$-theory on $7$-manifolds and $G$-structures, hep-th/0302047.

F. A. Belgun On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1–40. | MR 1760667 | Zbl 0988.32017

F. A. Belgun; A. Moroianu Nearly Kähler $6$-manifolds with reduced holonomy, Ann. Global Anal. Geom. 19 (2001), 307–319. | MR 1842572 | Zbl 0992.53037

M. Berger Sur les groupes d’holonomie des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330. (1955) | MR 0079806

M. Berger Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Sc. Norm. Sup. Pisa 15 (1961), 179–246. (1961) | MR 0133083 | Zbl 0101.14201

J. Berndt F. Tricerri L. Vanhecke Generalized Heisenberg groups and Damek-Ricci harmonic spaces, LNM 1598, Springer, 1995. (1995) | MR 1340192

A. Besse Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete Bd. 10, Springer-Verlag Berlin-Heidelberg 1987. (1987) | MR 0867684 | Zbl 0613.53001

A. Bilal J.-P. Derendinger; K. Sfetsos Weak $G_2$-holonomy from self-duality, flux and supersymmetry, Nuclear Phys. B 628 (2002), 112–132. | MR 1901225

J. M. Bismut A local index theorem for non-Kählerian manifolds, Math. Ann. 284 (1989), 681–699. (1989) | MR 1006380

D. E. Blair Contact manifolds in Riemannian geometry, LNM 509 (1976), Springer. (1976) | MR 0467588 | Zbl 0319.53026

D. E. Blair Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics vol. 203, Birkhäuser, 2002. | MR 1874240 | Zbl 1011.53001

D. E. Blair; L. Vanhecke New characterization of $\varphi $-symmetric spaces, Kodai Math. J. 10 (1987), 102–107. (1987) | MR 0879387

M. Bobieński The topological obstructions to the existence of an irreducible $\mathrm{SO}(3)$-structure on a five manifold, math.DG/0601066.

M. Bobieński; P. Nurowski Irreducible $\mathrm{SO}(3)$-geometries in dimension five, to appear in J. Reine Angew. Math.; math.DG/0507152. | MR 2338127

E. Bonan Sur les variétés riemanniennes à groupe d’holonomie $G_2$ ou $\mathrm{Spin}(7)$, C. R. Acad. Sc. Paris 262 (1966), 127–129. (1966) | MR 0196668

C. P. Boyer; K. Galicki $3$-Sasakian manifolds, in Essays on Einstein manifolds, (ed. by C. LeBrun and M. Wang), International Press 1999. (1999) | MR 1798609 | Zbl 1008.53047

C. P. Boyer; K. Galicki Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), 2419–2430. | MR 1823927 | Zbl 0981.53027

C. P. Boyer; K. Galicki Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, to appear 2007. | MR 2382957 | Zbl 1155.53002

C. P. Boyer K. Galicki B. M. Mann The geometry and topology of $3$-Sasakian manifolds, J. Reine Angew. Math. 455 (1994), 183–220. (1994) | MR 1293878

L. Brink P. Ramond; X. Xiong Supersymmetry and Euler multiplets, hep-th/0207253.

R. B. Brown; A. Gray Riemannian manifolds with holonomy group $\mathrm{Spin}(7)$, Differential Geometry in honor of K. Yano, Kinokiniya, Tokyo, 1972, 41–59. (1972) | MR 0328817

R. L. Bryant Metrics with exceptional holonomy, Ann. of Math. 126 (1987), 525–576. (1987) | MR 0916718 | Zbl 0637.53042

R. L. Bryant Classical, exceptional, and exotic holonomies: a status report, Actes de la Table ronde de Géométrie Différentielle en l’honneur de M. Berger. Collection SMF Séminaires et Congrès 1 (1996), 93–166. (1996) | MR 1427757 | Zbl 0882.53014

R. L. Bryant Some remarks on $G_2$-structures, in Proceeding of the 2004 Gokova Conference on Geometry and Topology (May, 2003), math.DG/0305124. | Zbl 1115.53018

R. L. Bryant; And S. M. Salamon On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989), 829–850. (1989) | MR 1016448

J. Bureš Multisymplectic structures of degree three of product type on $6$-dimensional manifolds, Suppl. Rend. Circ. Mat. Palermo II, Ser. bf 72 (2004), 91–98. | MR 2069397

J. Bureš; J. Vanžura Multisymplectic forms of degree three in dimension seven, Suppl. Rend. Circ. Mat. Palermo II, Ser. 71 (2003), 73–91. | MR 1982435

J. B. Butruille Classification des variétés approximativement kähleriennes homogènes, Ann. Global Anal. Geom. 27 (2005), 201–225. | MR 2158165

D. M. J. Calderbank; H. Pedersen Einstein-Weyl geometry, Surveys in differential geometry: Essays on Einstein manifolds. Lectures on geometry and topology, J. Diff. Geom. Suppl. 6 (1999), 387–423. (1999) | MR 1798617 | Zbl 0996.53030

E. Cartan Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Ac. Sc. 174 (1922), 593–595. (1922)

E. Cartan Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie), Ann. Ec. Norm. Sup. 40 (1923), 325–412, part one. (1923) | MR 1509253

E. Cartan Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie, suite), Ann. Ec. Norm. Sup. 41 (1924), 1–25, part one (continuation). (1924) | MR 1509255

E. Cartan Les récentes généralisations de la notion d’espace, Bull. Sc. Math. 48 (1924), 294–320. (1924)

E. Cartan Sur les variétés à connexion affine et la théorie de la relativité généralisée (deuxième partie), Ann. Ec. Norm. Sup. 42 (1925), 17–88, part two. English transl. of both parts by A. Magnon and A. Ashtekar, On manifolds with an affine connection and the theory of general relativity. Napoli: Bibliopolis (1986). (1925) | MR 1509263

I. Chavel A class of Riemannian homogeneous spaces, J. Differential Geom. 4 (1970), 13–20. (1970) | MR 0270295 | Zbl 0197.18302

D. Chinea; G. Gonzales A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15–36. (1990) | MR 1080209

D. Chinea; J. C. Marrero Classifications of almost contact metric structures, Rev. Roumaine Math. Pures Appl. 37 (1992), 581–599. (1992) | MR 1172273

S. G. Chiossi A. Fino Conformally parallel $G_2$-structures on a class of solvmanifolds, Math. Z. 252 (2006), 825–848. | MR 2206629

S. Chiossi; S. Salamon The intrinsic torsion of $SU(3)$ and $G_2$ structures, in O. Gil-Medrano et. al. (eds.), Proc. Intern. Conf. Valencia, Spain, July 8-14, 2001, Singapore, World Scientific, 115–133 (2002). | MR 1922042 | Zbl 1024.53018

R. Cleyton; S. Ivanov On the geometry of closed $G_2$-structures, math.DG/0306362. | Zbl 1122.53026

R. Cleyton; S. Ivanov Curvature decomposition of $G_2$ manifolds, to appear.

R. Cleyton; S. Ivanov Conformal equivalence between certain geometries in dimension $6$ and $7$, math.DG/0607487.

R. Cleyton; A. Swann Cohomogeneity-one $G_{2}$-structures, J. Geom. Phys. 44 (2002), 202–220. | MR 1969782 | Zbl 1025.53024

R. Cleyton; A. Swann Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004), 513–528. | MR 2114426 | Zbl 1069.53041

G. Curio B. Körs; D. Lüst Fluxes and branes in type II vacua and M-theory geometry with $G_2$ and $Spin(7)$ holonomy, hep-th/0111165.

P. Dalakov; S. Ivanov Harmonic spinors of Dirac operators of connections with torsion in dimension $4$, Classical Quantum Gravity 18 (2001), 253–265. | MR 1807617

B. De Witt H. Nicolai; N. P. Warner The embedding of gauged $n=8$ supergravity into $d=11$ supergravity, Nuclear Phys. B 255 (1985), 29. (1985) | MR 0792244

B. De Witt D. J. Smit; And N. D. Hari Dass Residual supersymmetry of compactified $D=10$ Supergravity, Nuclear Phys. B 283 (1987), 165. (1987)

D. Ž. Djoković Classification of trivectors of an eight-dimensional real vector space, Linear and Multilinear Algebra 13 (1983), 3–39. (1983) | MR 0691457

I. G. Dotti; A. Fino HyperKähler torsion structures invariant by nilpotent Lie groups, Classical Quantum Gravity 19 (2002), 551–562. | MR 1889760 | Zbl 1001.53031

S. Dragomir L. Ornea Locally conformal Kähler geometry, Progr. Math. vol. 155, Birkhäuser Verlag, 1998. (1998) | MR 1481969

M. J. Duff $M$-theory on manifolds of $G_2$-holonomy: the first twenty years, hep-th/0201062.

M. Fernández A classification of Riemannian manifolds with structure group $\mathrm{Spin}(7)$, Ann. Mat. Pura Appl. 143 (1986), 101–122. (1986) | MR 0859598

M. Fernández An example of a compact calibrated manifold associated with the exceptional Lie group $G_2$, J. Differential Geom. 26 (1987), 367–370. (1987) | MR 0906398

M. Fernández; A. Gray Riemannian manifolds with structure group $\mathrm{G}_2$, Ann. Mat. Pura Appl. 132 (1982), 19–45. (1982) | MR 0696037

J. Figueroa-O’Farrill G. Papadopoulos Maximally supersymmetric solutions of ten- and eleven-dimensional supergravities, hep-th/0211089.

A. Fino Almost contact homogeneous manifolds, Riv. Mat. Univ. Parma (5) 3 (1994), 321–332. (1994) | MR 1342063 | Zbl 0847.53036

A. Fino Almost contact homogeneous structures, Boll. Un. Mat. Ital. A 9 (1995), 299–311. (1995) | MR 1336238 | Zbl 0835.53039

A. Fino Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998), 1–22. (1998) | MR 1684209 | Zbl 0980.53060

A. Fino Almost Kähler $4$-dimensional Lie groups with $J$-invariant Ricci tensor, Differential Geom. Appl. 23 (2005), 26-37. | MR 2148908 | Zbl 1084.53025

A. Fino; G. Grantcharov Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math. 189 (2004), 439–450. | MR 2101226 | Zbl 1114.53043

A. Fino M. Parton S. Salamon Families of strong KT structures in six dimensons, Comment. Math. Helv. 79 (2004), 317–340. | MR 2059435

Th. Friedrich Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117–146. (1980) | MR 0600828 | Zbl 0462.53027

Th. Friedrich Dirac operators in Riemannian geometry, Grad. Stud. Math. vol. 25, 2000. | MR 1777332 | Zbl 0949.58032

Th. Friedrich Weak $\mathrm{Spin}(9)$-structures on $16$-dimensional Riemannian manifolds, Asian Math. J. 5 (2001), 129–160. | MR 1868168

Th. Friedrich $Spin(9)$-structures and connections with totally skew-symmetric torsion, J. Geom. Phys. 47 (2003), 197–206. | MR 1991473 | Zbl 1039.53049

Th. Friedrich On types of non-integrable geometries, Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003), 99–113. | MR 1982437 | Zbl 1079.53041

Th. Friedrich $G_2$-manifolds with parallel characteristic torsion, math.DG/0604441, to appear in Differential Geom. Appl. | MR 2373939 | Zbl 1141.53019

Th. Friedrich; R. Grunewald On the first eigenvalue of the Dirac operator on $6$-dimensional manifolds, Ann. Global Anal. Geom. 3 (1985), 265–273. (1985) | MR 0813132 | Zbl 0577.58034

Th. Friedrich; S. Ivanov Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), 303–336. | MR 1928632 | Zbl 1127.53304

Th. Friedrich; S. Ivanov Almost contact manifolds, connections with torsion and parallel spinors, J. Reine Angew. Math. 559 (2003), 217–236. | MR 1989651 | Zbl 1035.53058

Th. Friedrich; S. Ivanov Killing spinor equations in dimension $7$ and geometry of integrable $\mathrm{G}_2$-manifolds, J. Geom. Phys. 48 (2003), 1–11. | MR 2006222

Th. Friedrich; I. Kath Einstein manifolds of dimension five with small eigenvalues of the Dirac operator, J. Differential Geom. 19 (1989), 263–279. (1989) | MR 0982174

Th. Friedrich; I. Kath $7$-dimensional compact Riemannian manifolds with Killing spinors, Comm. Math. Phys. 133 (1990), 543–561. (1990) | MR 1079795 | Zbl 0722.53038

Th. Friedrich I. Kath A. Moroianu; U. Semmelmann On nearly parallel $\mathrm{G}_2$-structures, J. Geom. Phys. 3 (1997), 256–286. (1997) | MR 1484591

Th. Friedrich; E. C. Kim The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), 128–172. | MR 1738150 | Zbl 0961.53023

Th. Friedrich; S. Sulanke Ein Kriterium für die formale Selbstadjungiertheit des Dirac-Operators, Coll. Math. XL (1979), 239–247. (1979) | MR 0547866 | Zbl 0426.58023

J.-X. Fu; S.-T. Yau Existence of supersymmetric Hermitian metrics with torsion on non-Kähler manifolds, hep-th/0509028.

A. Fujiki; M. Pontecorvo On Hermitian geometry of complex surfaces, in O. Kowalski et al. (ed.), Complex, contact and symmetric manifolds. In honor of L. Vanhecke. Selected lectures from the international conference “Curvature in Geometry" held in Lecce, Italy, June 11-14, 2003. Birkhäuser, Progr. Math. 234 (2005), 153–163. | MR 2105147 | Zbl 1085.53065

T. Fukami; S. Ishihara Almost Hermitian structure on $S^6$, Hokkaido Math. J. 7 (1978), 206–213. (1978) | MR 0509406

S. J. Gates C. M. Hull M. Rocek Twisted multiplets and new supersymmetric nonlinear sigma models, Nuclear Phys. B 248 (1984), 157. (1984) | MR 0776369

J. Gauntlett N. Kim D. Martelli D. Waldram Fivebranes wrapped on SLAG three-cycles and related geometry, hep-th/0110034.

J. P. Gauntlett D. Martelli; D. Waldram Superstrings with intrinsic torsion, Phys. Rev. D (3) 69 (2004), 086002. | MR 2095098

P. Gauduchon Structures de Weyl-Einstein, espaces de twisteurs et variétés de type $S^1 \times S^3$, J. Reine Angew. Math. 469 (1995), 1–50. (1995) | MR 1363825

P. Gauduchon Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. Ser. VII 2 (1997), 257–289. (1997) | MR 1456265 | Zbl 0876.53015

P. Gauduchon; K. P. Tod Hyper-Hermitian metrics with symmetry, J. Geom. Phys. 25 (1998), 291–304. (1998) | MR 1619847 | Zbl 0945.53042

P. B. Gilkey The spectral geometry of a Riemannian manifold, J. Differential Geom. 10 (1975), 601–618. (1975) | MR 0400315 | Zbl 0316.53035

G. W. Gibbons H. Lü C. N. Pope; And K. S. Stelle Supersymmetric domain walls from metrics of special holonomy, Nuclear Phys. B 623 (2002), 3–46. | MR 1883449

M. Godlinski W. Kopczynski P. Nurowski Locally Sasakian manifolds, Classical Quantum Gravity 17 (2000), L105–L115. | MR 1791091

S. Goette Equivariant $\eta $-invariants on homogeneous spaces, Math. Z. 232 (1999), 1–42. (1999) | MR 1714278 | Zbl 0941.58016

S. I. Goldberg Integrabilty of almost Kähler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96–100. (1969) | MR 0238238

E. Goldstein S. Prokushkin Geometric model for complex non-Kähler manifolds with $\mathrm{SU}(3)$-structure, Comm. Math. Phys. 251 (2004), 65–78. | MR 2096734

C. Gordon; W. Ziller Naturally reductive metrics of nonpositive Ricci curvature, Proc. Amer. Math. Soc. 91 (1984), 287–290. (1984) | MR 0740188 | Zbl 0513.53049

G. Grantcharov; Y. S. Poon Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), 19–37. | MR 1782143 | Zbl 0993.53016

A. Gray Nearly Kähler manifolds, J. Differential Geom. 4 (1970), 283–309. (1970) | MR 0267502 | Zbl 0201.54401

A. Gray Weak holonomy groups, Math. Z. 123 (1971), 290–300. (1971) | MR 0293537 | Zbl 0222.53043

A. Gray The structure of nearly Kähler manifolds, Math. Ann. 223 (1976), 233–248. (1976) | MR 0417965 | Zbl 0345.53019

A. Gray; L. M. Hervella The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35–58. (1980) | MR 0581924 | Zbl 0444.53032

M. B. Green J. H. Schwarz; And E. Witten Superstring theory. Volume 2: Loop amplitudes, anomalies and phenomenology, Cambridge Monogr. Math. Phys. 1987. (1987) | MR 0878144

B. H. Gross B. Kostant P. Ramond; And S. Sternberg The Weyl character formula, the half-spin representations, and equal rank subgroups, Proc. Natl. Acad. Sci. USA 95 (1998), no. 15, 8441–8442. (1998) | MR 1639139

R. Grunewald Six-dimensional Riemannian manifolds with a real Killing spinor, Ann. Glob. Anal. Geom. 8 (1990), 43–59. (1990) | MR 1075238 | Zbl 0704.53050

G. B. Gurevich Classification of trivectors of rank $8$, (in Russian), Dokl. Akad. Nauk SSSR 2 (1935), 353–355. (1935)

G. B. Gurevich Algebra of trivectors II, (in Russian), Trudy Sem. Vektor. Tenzor. Anal. 6 (1948), 28–124. (1948) | MR 0057861

F. W. Hehl P. Von Der Heyde G. D. Kerlick J. M. Nester General relativity with spin and torsion: Foundations and prospects, Rev. Modern Phys. 48 (1976), 393–416. (1976) | MR 0439001

F. W. Hehl J. D. Mccrea E. W. Mielke Y. Ne’Eman Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rep. 258 (1995), 1–171. (1995) | MR 1340371

S. Helgason Differential Geometry, Lie Groups and Symmetric Spaces, Pure Appl. Math. vol. 80, Acad. Press, New York, 1978. (1978) | MR 0514561 | Zbl 0451.53038

N. Hitchin Harmonic spinors, Adv. Math. 14 (1974), 1–55. (1974) | MR 0358873 | Zbl 0284.58016

N. Hitchin The geometry of three-forms in six and seven dimensions, J. Differential Geom. 55 (2000), 547–576. | MR 1863733

N. Hitchin Stable forms and special metrics, math.DG/0107101; Contemp. Math. 288 (2001), 70–89. | MR 1871001 | Zbl 1004.53034

P. S. Howe; G. Papadopoulos Ultraviolet behavior of two-dimensional supersymmetric nonlinear sigma models, Nuclear Phys. B 289 (1987), 264–276. (1987)

P. S. Howe; G. Papadopoulos Finitness and anomalies in $(4,0)$ supersymmetric sigma models, Nuclear Phys. B 381 (1992), 360. (1992)

P. S. Howe; G. Papadopoulos Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B 379 (1996), 80–86. (1996) | MR 1396267

J.-S. Huang; P. Pandžić Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185–202. | MR 1862801

C. M. Hull Lectures On Nonlinear Sigma Models And Strings, PRINT-87-0480(Cambridge); Lectures given at Super Field Theories Workshop, Vancouver, Canada, July 25-Aug 6, 1986. (1986) | MR 1102925

J.-I. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997–1028. (1970) | MR 0277558 | Zbl 0217.36203

A. Ikeda Formally self adjointness for the Dirac operator on homogeneous spaces, Osaka J. Math. 12 (1975), 173–185. (1975) | MR 0376962 | Zbl 0317.58019

L. Infeld (Volume Dedicated To) Recent developments in General Relativity, Oxford, Pergamon Press & Warszawa, PWN, 1962. (1962) | MR 0164694

S. Ivanov Connections with torsion, parallel spinors and geometry of $\mathrm{Spin}(7)$-manifolds, Math. Res. Lett. 11 (2004), 171–186. | MR 2067465

S. Ivanov; I. Minchev Quaternionic Kähler and hyperKähler manifolds with torsion and twistor spaces, J. Reine Angew. Math. 567 (2004), 215–233. | MR 2038309

S. Ivanov; G. Papadopoulos Vanishing theorems and string background, Classical Quantum Gravity 18 (2001), 1089–1110. | MR 1822270

S. Ivanov M. Parton; P. Piccinni Locally conformal parallel $G_2$- and $\mathrm{Spin}(7)$-structures, math.DG/0509038, to appear in Math. Res. Lett. 13 (2006). | MR 2231110

W. Jelonek Some simple examples of almost Kähler non-Kähler structures, Math. Ann. 305 (1996), 639–649. (1996) | MR 1399708 | Zbl 0858.53027

G. Jensen Imbeddings of Stiefel manifolds into Grassmannians, Duke Math. J. 42 (1975), 397–407. (1975) | MR 0375164 | Zbl 0335.53042

D. Joyce Compact hypercomplex and quaternionic manifolds, J. Differential Geom. 35 (1992), 743–761. (1992) | MR 1163458 | Zbl 0735.53050

D. Joyce Compact Riemannian $7$-manifolds with holonomy $G_2$. I, J. Differential Geom. 43 (1996), 291–328. (1996) | MR 1424428

D. Joyce Compact Riemannian $7$-manifolds with holonomy $G_2$. II, J. Differential Geom. 43 (1996), 329–375. (1996) | MR 1424428

D. Joyce Compact $8$-manifolds with holonomy $\mathrm{Spin}(7)$, Invent. Math. 123 (1996), 507–552. (1996) | MR 1383960

D. Joyce Compact manifolds with special holonomy, Oxford Science Publ., 2000. | MR 1787733 | Zbl 1027.53052

A. Kaplan On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), 35–42. (1983) | MR 0686346 | Zbl 0521.53048

T. Kashiwada A note on a Riemannian space with Sasakian $3$-structure, Natur. Sci. Rep. Ochanomizu Univ. 22 (1971), 1–2. (1971) | MR 0303449 | Zbl 0228.53033

T. Kashiwada On a contact 3-structure, Math. Z. 238 (2001), 829–832. | MR 1872576 | Zbl 1004.53058

G. Ketsetzis; S. Salamon Complex structures on the Iwasawa manifold, Adv. Geom. 4 (2004), 165–179. | MR 2055676 | Zbl 1059.22012

T. W. B. Kibble Lorentz invariance and the gravitational field, J. Math. Phys. 2 (1961), 212–221. (1961) | MR 0127952 | Zbl 0095.22903

F. Klein Das Erlanger Programm, Ostwalds Klassiker der exakten Wissenschaften Band 253, Verlag H. Deutsch, Frankfurt a. M., 1995. (1995) | Zbl 0833.01037

K.-D. Kirchberg An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Global Anal. Geom. 4 (1986), 291–325. (1986) | MR 0910548 | Zbl 0629.53058

K.-D. Kirchberg Killing spinors on Kähler manifolds, Ann. Global Anal. Geom. 11 (1993), 141–164. (1993) | MR 1225435 | Zbl 0810.53033

K.-D. Kirchberg Integrability conditions for almost Hermitian and almost Kähler $4$-manifolds, math.DG/0605611.

V. F. Kirichenko $K$-spaces of maximal rank, Mat. Zametki 22 (1977), 465–476. (1977) | MR 0474103

V. F. Kirichenko A. R. Rustanov Differential geometry of quasi-Sasakian manifolds, Sb. Math. 193 (2002), 1173-1201; translation from Mat. Sb. 193 (2002), 71–100. (193 ) | MR 1934545

S. Kobayashi; K. Nomizu Foundations of differential geometry I, Wiley Classics Library, Wiley Inc., Princeton, 1963, 1991. (1963) | Zbl 0119.37502

S. Kobayashi; K. Nomizu Foundations of differential geometry II, Wiley Classics Library, Wiley Inc., Princeton, 1969, 1996. (1969)

W. Kopczyński An anisotropic universe with torsion, Phys. Lett. A 43 (1973), 63–64. (1973)

B. Kostant On differential geometry and homogeneous spaces II, Proc. N. A. S. 42 (1956), 354–357. (1956) | MR 0088017 | Zbl 0075.31603

B. Kostant A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), 447–501. (1999) | MR 1719734 | Zbl 0952.17005

B. Kostant Dirac cohomology for the Cubic Dirac operator, in: Joseph, Anthony (ed.) et al., Studies in memory of Issai Schur. Basel: Birkhäuser. Progr. Math. 210 (2003), 69–93. | MR 1985723 | Zbl 1165.17301

B. Kostant; P. Michor The generalized Cayley map from an algebraic group to its Lie algebra, preprint (arXiv:math.RT/0109066v1, 10 Sep 2001), to appear in The Orbit Method in Geometry and Physics (A. A. Kirillov Festschrift), Progr. Math. (2003). | MR 1995382 | Zbl 1072.20051

A. Kovalev Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003), 125–160. | MR 2024648 | Zbl 1043.53041

O. Kowalski; L. Vanhecke Four-dimensional naturally reductive homogeneous spaces, Differential geometry on homogeneous spaces, Conf. Torino/Italy 1983, Rend. Sem. Mat., Torino, Fasc. Spec. (1983), 223-232. (1983) | MR 0829007 | Zbl 0631.53039

O. Kowalski; L. Vanhecke A generalization of a theorem on naturally reductive homogeneous spaces, Proc. Amer. Math. Soc. 91 (1984), 433–435. (1984) | MR 0744644 | Zbl 0542.53029

O. Kowalski; L. Vanhecke Classification of five-dimensional naturally reductive spaces, Math. Proc. Cambridge Philos. Soc. 97 (1985), 445–463. (1985) | MR 0778679 | Zbl 0555.53024

O. Kowalski; S. Wegrzynowski A classification of $5$-dimensional $\varphi $-symmetric spaces, Tensor, N. S. 46 (1987), 379–386. (1987)

E. Kreyszig Differential geometry, Dover Publ., inc., New York, 1991, unabridged republication of the 1963 printing. (1991) | MR 1118149

G. Landweber Harmonic spinors on homogeneous spaces, Represent. Theory 4 (2000), 466–473. | MR 1780719 | Zbl 0972.22008

J.-L. Li; S.-T. Yau Existence of supersymmetric string theory with torsion, J. Differential Geom. 70 (2005), 143–182 and hep-th/0411136. | MR 2192064 | Zbl 1102.53052

A. Lichnerowicz Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7–9. (1963) | MR 0156292 | Zbl 0136.18401

A. Lichnerowicz Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett. Math. Phys. 13 (1987), 331–344. (1987) | MR 0895296 | Zbl 0624.53034

A. Lichnerowicz Les spineurs-twisteurs sur une variété spinorielle compacte, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 381–385. (1988) | MR 0934624 | Zbl 0641.53014

D. Lüst; S. Theisen Lectures on String Theory, Springer-Verlag, 1989. (1989) | MR 1028064

D. Martelli J. Sparks S.-T. Yau Sasaki-Einstein Manifolds and Volume Minimisation, hep-th/0603021.

F. Martín Cabrera Special almost Hermitian geometry, J. Geom. Phys. 55 (2005), 450–470. | MR 2162420

F. Martín Cabrera M. D. Monar Hernandez A. F. Swann Classification of $G_2$-structures, J. London Math. Soc. II. Ser. 53 (1996), 407–416. (1996) | MR 1373070

F. Martín Cabrera; A. F. Swann Almost Hermitian structures and quaternionic geometries, Differential Geom. Appl. 21 (2004), 199–214. | MR 2073825

Y. Mckenzie Wang Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59–68. (1989) | MR 1029845

S. Mehdi; R. Zierau Principal Series Representations and Harmonic Spinors, to appear in Adv. Math. (preprint at http://www.math.okstate.edu/~zierau/papers.html). | MR 2186917 | Zbl 1085.22011

J. Michelson A. Strominger The geometry of (super) conformal quantum mechanics, Comm. Math. Phys. 213 (2000), 1–17. | MR 1782142

V. Miquel The volume of small geodesic balls for a metric connection, Compositio Math. 46 (1982), 121–132. (1982) | MR 0660156

V. Miquel Volumes of geodesic balls and spheres associated to a metric connection with torsion, Contemp. Math. 288 (2001), 119–128. | MR 1871004 | Zbl 1005.53012

S. Nagai Naturally reductive Riemannian homogeneous structure on a homogeneous real hypersurface in a complex space form, Boll. Un. Mat. Ital. A (7) 9 (1995), 391–400. (1995) | MR 1336245 | Zbl 0835.53068

S. Nagai Naturally reductive Riemannian homogeneous structures on some classes of generic submanifolds in complex space forms, Geom. Dedicata 62 (1996), 253–268. (1996) | MR 1406440 | Zbl 0860.53032

S. Nagai The classification of naturally reductive homogeneous real hypersurfaces in complex projective space, Arch. Math. 69 (1997), 523–528. (1997) | MR 1480520 | Zbl 0901.53037

P.-A. Nagy Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002) 481–504. | MR 1946344 | Zbl 1041.53021

P.-A. Nagy On nearly-Kähler geometry, Ann. Global Anal. Geom. 22 (2002), 167–178. | MR 1923275 | Zbl 1020.53030

P. Nurowski M. Przanowski A four-dimensional example of Ricci-flat metric admitting almost-Kähler non-Kähler structure, ESI preprint 477, 1997; Classical Quantum Gravity 16 (1999), L9–L16. (1997) | MR 1682582

P. Nurowski Distinguished dimensions for special Riemannian geometries, math.DG/0601020.

R. Parthasarathy Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1–30. (1972) | MR 0318398 | Zbl 0249.22004

R. Penrose Spinors and torsion in general relativity, Found. of Phys. 13 (1983), 325-339. (1983) | MR 0838841

Y. S. Poon; A. F. Swann Potential functions of HKT spaces, Classical Quantum Gravity 18 (2001), 4711–4714. | MR 1894924 | Zbl 1007.53038

Y. S. Poon; A. F. Swann Superconformal symmetry and HyperKähler manifolds with torsion, Comm. Math. Phys. 241 (2003), 177–189. | MR 2013757

Chr. Puhle The Killing equation with higher order potentials, Ph. D. Thesis, Humboldt-Universität zu Berlin, 2006/07.

W. Reichel Über trilineare alternierende Formen in sechs und sieben Veränderlichen und die durch sie definierten geometrischen Gebilde, Druck von B. G. Teubner in Leipzig 1907, Dissertation an der Universität Greifswald. (1907)

M. Rocek Modified Calabi-Yau manifolds with torsion, in: Yau, Shing-Tung (ed.), Essays on mirror manifolds. Cambridge, MA: International Press. 1992, 480–488. (1992) | MR 1191438 | Zbl 0859.53050

M. L. Ruggiero; A. Tartaglia Einstein–Cartan theory as a theory of defects in space-time, Amer. J. Phys. 71 (2003), 1303–1313. | MR 2016766

S. Salamon Riemannian geometry and holonomy groups, Pitman Res. Notes Math. Ser. 201, Jon Wiley & Sons, 1989. (1989) | MR 1004008 | Zbl 0685.53001

S. Salamon Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311–333. | MR 1812058

S. Salamon A tour of exceptional geometry, Milan J. Math. 71 (2003), 59–94. | MR 2120916 | Zbl 1055.53039

K. Sekigawa On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677–684. (1987) | MR 0905633 | Zbl 0637.53053

N. Schoemann Almost hermitian structures with parallel torsion, PhD thesis, Humboldt-Universität zu Berlin, 2006. | MR 2360237 | Zbl 1137.53014

J. A. Schouten Der Ricci-Kalkül, Grundlehren Math. Wiss. 10, Springer-Verlag Berlin, 1924. (1924) | MR 0516659

J. A. Schouten Klassifizierung der alternierenden Größen dritten Grades in $7$ Dimensionen, Rend. Circ. Mat. Palermo 55 (1931), 137–156. (1931)

E. Schrödinger Diracsches Elektron im Schwerefeld I, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys.-Math. Klasse 1932, Verlag der Akademie der Wissenschaften Berlin, 1932, 436–460. (1932)

J. Simons On the transitivity of holonomy systems, Ann. of Math. 76 (1962), 213–234. (1962) | MR 0148010 | Zbl 0106.15201

S. Slebarski The Dirac operator on homogeneous spaces and representations of reductive Lie groups I, Amer. J. Math. 109 (1987), 283–301. (1987) | MR 0882424 | Zbl 0649.58031

S. Slebarski The Dirac operator on homogeneous spaces and representations of reductive Lie groups II, Amer. J. Math. 109 (1987), 499–520. (1987) | MR 0892596 | Zbl 0669.22003

P. Spindel A. Sevrin W. Troost; And A. Van Proeyen Extended supersymmetric $\sigma $-models on group manifolds, Nuclear Phys. B 308 (1988), 662–698. (1988) | MR 0967938

S. Sternberg Lie algebras, Lecture Notes in Math. 1999. (1999)

A. Strominger Superstrings with torsion, Nuclear Phys. B 274 (1986), 253–284. (1986) | MR 0851702

K. Strubecker Differentialgeometrie. II: Theorie der Flächenmetrik, Sammlung Göschen, W. de Gruyter, Berlin, 1969. (1969) | MR 0239514 | Zbl 0169.23501

A. F. Swann Aspects symplectiques de la géométrie quaternionique, C. R. Acad. Sci. Paris, Sér. I 308 (1989), 225–228. (1989) | MR 0986384 | Zbl 0661.53023

A. F. Swann HyperKähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421–450. (1991) | MR 1096180 | Zbl 0711.53051

A. F. Swann Weakening holonomy, ESI preprint No. 816 (2000); in S. Marchiafava et. al. (eds.), Proc. of the Second Meeting on Quaternionic Structures in Mathematics and Physics, Roma 6-10 September 1999, World Scientific, Singapore 2001, 405–415. (1999) | MR 1848678

J. Tafel A class of cosmological models with torsion and spin, Acta Phys. Polon. B 6 (1975), 537–554. (1975)

S. Tanno Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349–379. (1989) | MR 1000553 | Zbl 0677.53043

W. Thurston Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467–468. (1976) | MR 0402764 | Zbl 0324.53031

A. Trautman On the structure of the Einstein-Cartan equations, Sympos. Math. 12 (1973), 139–162. (1973) | MR 0376097 | Zbl 0273.53021

A. Trautman Spin and torsion may avert gravitational singularities, Nature Phys. Sci. 242 (1973) 7. (1973)

A. Trautman Gauge and optical aspects of gravitation, Classical Quantum Gravity 16 (1999), 157–175. (1999) | MR 1728438 | Zbl 0948.83010

F. Tricerri; L. Vanhecke Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Notes Series, vol. 83, Cambridge Univ. Press, Cambridge, 1983. (1983) | MR 0712664 | Zbl 0509.53043

F. Tricerri; L. Vanhecke Geodesic spheres and naturally reductive homogeneous spaces, Riv. Mat. Univ. Parma 10 (1984), 123–131. (1984) | MR 0777319 | Zbl 0563.53040

F. Tricerri; L. Vanhecke Naturally reductive homogeneous spaces and generalized Heisenberg groups, Compositio Math. 52 (1984), 389–408. (1984) | MR 0756730 | Zbl 0551.53028

I. Vaisman On locally conformal almost kähler manifolds, Israel J. Math. 24 (1976), 338–351. (1976) | MR 0418003 | Zbl 0335.53055

I. Vaisman Locally conformal Kähler manifolds with parallel Lee form, Rend. Math. Roma 12 (1979), 263–284. (1979) | MR 0557668 | Zbl 0447.53032

P. Van Nieuwenhuizen Supergravity, Phys. Rep. 68 (1981), 189–398. (1981) | MR 0615178 | Zbl 0465.53041

J. Vanžura One kind of multisymplectic structures on $6$-manifolds, Proceedings of the Colloquium on Differential Geometry, Debrecen, 2000, 375–391 (2001). | MR 1859316

M. Verbitsky HyperKähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002), 679–712. | MR 1958088

A. B. Vinberg; A. G. Ehlahvili Classification of trivectors of a $9$-dimensional space, Sel. Math. Sov. 7 (1988), 63–98. Translated from Tr. Semin. Vektorn. Tensorm. Anal. Prilozh. Geom. Mekh. Fiz. 18 (1978), 197–233. (1988) | MR 0504529 | Zbl 0648.15021

M. Y. Wang Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59–68. (1989) | MR 1029845 | Zbl 0688.53007

M. Y. Wang; W. Ziller On normal homogeneous Einstein manifolds, Ann. Sci. Éc. Norm. Sup., $4^{e}$ série 18 (1985), 563–633. (1985) | MR 0839687 | Zbl 0598.53049

R. Westwick Real trivectors of rank seven, Linear and Multilinear Algebra 10 (1981), 183–204. (1981) | MR 0630147 | Zbl 0464.15001

F. Witt Generalised $G_2$-manifolds, Comm. Math. Phys. 265 (2006), 275–303, math.DG/0411642. | MR 2231673 | Zbl 1154.53014

F. Witt Special metrics and Triality, math.DG/0602414.

J. A. Wolf Partially harmonic spinors and representations of reductive Lie groups, J. Funct. Anal. 15 (1974), 117–154. (1974) | MR 0393351 | Zbl 0279.22009

S.-T. Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampŕe equations. I, Comm. Pure Appl. Math. 31 (1978), 339–411. (1978) | MR 0480350

W. Ziller The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces, Comment. Math. Helv. 52 (1977), 573–590. (1977) | MR 0474145 | Zbl 0368.53033

W. Ziller Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), 351–358. (1982) | MR 0661203 | Zbl 0469.53043