This review article intends to introduce the reader to non-integrable geometric structures on Riemannian manifolds and invariant metric connections with torsion, and to discuss recent aspects of mathematical physics—in particular superstring theory—where these naturally appear. Connections with skew-symmetric torsion are exhibited as one of the main tools to understand non-integrable geometries. To this aim a a series of key examples is presented and successively dealt with using the notions of intrinsic torsion and characteristic connection of a $G$-structure as unifying principles. The General Holonomy Principle bridges over to parallel objects, thus motivating the discussion of geometric stabilizers, with emphasis on spinors and differential forms. Several Weitzenböck formulas for Dirac operators associated with torsion connections enable us to discuss spinorial field equations, such as those governing the common sector of type II superstring theory. They also provide the link to Kostant’s cubic Dirac operator.
@article{108020, author = {Ilka Agricola}, title = {The Srn\'\i\ lectures on non-integrable geometries with torsion}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {5-84}, zbl = {1164.53300}, mrnumber = {2322400}, language = {en}, url = {http://dml.mathdoc.fr/item/108020} }
Agricola, Ilka. The Srní lectures on non-integrable geometries with torsion. Archivum Mathematicum, Tome 042 (2006) pp. 5-84. http://gdmltest.u-ga.fr/item/108020/
An example of an almost Kähler manifold which is not Kählerian, Bolletino U. M. I. (6) 3 A (1984), 383–392. (1984) | MR 0769169 | Zbl 0559.53023
Almost Hermitian geometry on six dimensional nilmanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) Vol. XXX (2001), 147–170. | MR 1882028
Connexions sur les espaces homogènes naturellement réductifs et leurs opérateurs de Dirac, C. R. Acad. Sci. Paris Sér. I 335 (2002), 43–46. | MR 1920993 | Zbl 1010.53024
Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory, Comm. Math. Phys. 232 (2003), 535–563. | MR 1952476 | Zbl 1032.53041
Solvmanifolds with integrable and non-integrable $G_2$-structures, math.DG/0510300, to appear in Differential Geom. Appl. | MR 2311729
Global Analysis – Differential forms in Calculus, Geometry and Physics, Graduate Studies in Mathematics, Publications of the AMS 2002, Providence, Rhode Island 2002. | MR 1998826
Killing spinors in supergravity with $4$-fluxes, Classical Quantum Gravity 20 (2003), 4707–4717. | MR 2019441 | Zbl 1045.83045
On the holonomy of connections with skew-symmetric torsion, Math. Ann. 328 (2004), 711–748. | MR 2047649 | Zbl 1055.53031
The Casimir operator of a metric connection with totally skew-symmetric torsion, J. Geom. Phys. 50 (2004), 188–204. | MR 2078225
Geometric structures of vectorial type, math.DG/0509147, to appear in J. Geom. Phys. | MR 2252869 | Zbl 1106.53033
On the Ricci tensor in the common sector of type II string theory, Classical Quantum Gravity 22 (2005), 2569–2577. | MR 2153698
The geodesics of metric connections with vectorial torsion, Ann. Global Anal. Geom. 26 (2004), 321–332. | MR 2103403 | Zbl 1130.53029
Riemannian spaces with exceptional holonomy groups, Func. Anal. Prilozh. 2 (1968), 1–10. (1968) | MR 0231313
Compatible almost complex structures on quaternion Kähler manifolds, Ann. Global Anal. Geom. 16 (1998), 419–444. (1998) | MR 1648844
Classification of pseudo-Riemannian symmetric spaces of quaternionic Kähler type, Vinberg, Ernest (ed.), Lie groups and invariant theory. Providence, RI: American Mathematical Society 213 (AMS). Translations. Series 2. Adv. Math. Sci. 56 (2005), 33–62. | MR 2140713
On the classification of the almost contact metric manifolds, Mathematics and education in mathematics, Proc. 15th Spring Conf., Sunny Beach/Bulg. 1986, 155–161. (1986) | MR 0872914
$Sp(n)U(1)$-connections with parallel totally skew-symmetric torsion, J. Geom. Phys. 57 (2006), 323–337, math.DG/0311248. | MR 2265474 | Zbl 1107.53012
On weak holonomy, Math. Scand. 96 (2005), 169–189. | MR 2153409 | Zbl 1079.53071
Almost Hermitian $6$-manifolds revisited, J. Geom. Phys. 53 (2005), 1–30. | MR 2102047
Dirac operators on Hermitian spin surfaces, Ann. Global Anal. Geom. 18 (2000), 529–539. | MR 1800590
$M$-theory on seven manifolds with $G$-fluxes, hep-th/0111220.
A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428–443. (1953) | MR 0063739 | Zbl 0052.18002
On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669. (1958) | MR 0102842 | Zbl 0134.17802
A splitting theorem for Kähler manifolds whose Ricci tensors have constant eigenvalues, Internat. J. Math. 12 (2001), 769–789. | MR 1850671
Local rigidity of certain classes of almost Kähler $4$-manifolds, Ann. Global Anal. Geom. 21 (2002), 151–176. | MR 1894944
Almost Kähler geometry, Ph. D. Thesis, Oxford University, 1998. (1998)
A geometric construction for the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1–62. (1977) | MR 0463358
$M$-theory dynamics on a manifold of $G_2$ holonomy, Adv. Theor. Math. Phys. 6 (2002), 1–106. | MR 1992874 | Zbl 1033.81065
Geodesic spheres and symmetries in naturally reductive spaces, Michigan Math. J. 22 (1975), 71–76. (1975) | MR 0372786
Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18 (1979). (1979) | MR 0519928
Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509–521. (1993) | MR 1224089
Potentials for hyper-Kähler metrics with torsion, Classical Quantum Gravity 21 (2004), 3127–3135. | MR 2072130
Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik, Band 124, Teubner-Verlag Stuttgart/Leipzig, 1991. (1991) | MR 1164864
Fluxes in $M$-theory on $7$-manifolds and $G$-structures, hep-th/0302047.
On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1–40. | MR 1760667 | Zbl 0988.32017
Nearly Kähler $6$-manifolds with reduced holonomy, Ann. Global Anal. Geom. 19 (2001), 307–319. | MR 1842572 | Zbl 0992.53037
Sur les groupes d’holonomie des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330. (1955) | MR 0079806
Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Sc. Norm. Sup. Pisa 15 (1961), 179–246. (1961) | MR 0133083 | Zbl 0101.14201
Generalized Heisenberg groups and Damek-Ricci harmonic spaces, LNM 1598, Springer, 1995. (1995) | MR 1340192
Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete Bd. 10, Springer-Verlag Berlin-Heidelberg 1987. (1987) | MR 0867684 | Zbl 0613.53001
Weak $G_2$-holonomy from self-duality, flux and supersymmetry, Nuclear Phys. B 628 (2002), 112–132. | MR 1901225
A local index theorem for non-Kählerian manifolds, Math. Ann. 284 (1989), 681–699. (1989) | MR 1006380
Contact manifolds in Riemannian geometry, LNM 509 (1976), Springer. (1976) | MR 0467588 | Zbl 0319.53026
Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics vol. 203, Birkhäuser, 2002. | MR 1874240 | Zbl 1011.53001
New characterization of $\varphi $-symmetric spaces, Kodai Math. J. 10 (1987), 102–107. (1987) | MR 0879387
The topological obstructions to the existence of an irreducible $\mathrm{SO}(3)$-structure on a five manifold, math.DG/0601066.
Irreducible $\mathrm{SO}(3)$-geometries in dimension five, to appear in J. Reine Angew. Math.; math.DG/0507152. | MR 2338127
Sur les variétés riemanniennes à groupe d’holonomie $G_2$ ou $\mathrm{Spin}(7)$, C. R. Acad. Sc. Paris 262 (1966), 127–129. (1966) | MR 0196668
$3$-Sasakian manifolds, in Essays on Einstein manifolds, (ed. by C. LeBrun and M. Wang), International Press 1999. (1999) | MR 1798609 | Zbl 1008.53047
Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), 2419–2430. | MR 1823927 | Zbl 0981.53027
Sasakian Geometry, Oxford Mathematical Monographs, Oxford University Press, to appear 2007. | MR 2382957 | Zbl 1155.53002
The geometry and topology of $3$-Sasakian manifolds, J. Reine Angew. Math. 455 (1994), 183–220. (1994) | MR 1293878
Supersymmetry and Euler multiplets, hep-th/0207253.
Riemannian manifolds with holonomy group $\mathrm{Spin}(7)$, Differential Geometry in honor of K. Yano, Kinokiniya, Tokyo, 1972, 41–59. (1972) | MR 0328817
Metrics with exceptional holonomy, Ann. of Math. 126 (1987), 525–576. (1987) | MR 0916718 | Zbl 0637.53042
Classical, exceptional, and exotic holonomies: a status report, Actes de la Table ronde de Géométrie Différentielle en l’honneur de M. Berger. Collection SMF Séminaires et Congrès 1 (1996), 93–166. (1996) | MR 1427757 | Zbl 0882.53014
Some remarks on $G_2$-structures, in Proceeding of the 2004 Gokova Conference on Geometry and Topology (May, 2003), math.DG/0305124. | Zbl 1115.53018
On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989), 829–850. (1989) | MR 1016448
Multisymplectic structures of degree three of product type on $6$-dimensional manifolds, Suppl. Rend. Circ. Mat. Palermo II, Ser. bf 72 (2004), 91–98. | MR 2069397
Multisymplectic forms of degree three in dimension seven, Suppl. Rend. Circ. Mat. Palermo II, Ser. 71 (2003), 73–91. | MR 1982435
Classification des variétés approximativement kähleriennes homogènes, Ann. Global Anal. Geom. 27 (2005), 201–225. | MR 2158165
Einstein-Weyl geometry, Surveys in differential geometry: Essays on Einstein manifolds. Lectures on geometry and topology, J. Diff. Geom. Suppl. 6 (1999), 387–423. (1999) | MR 1798617 | Zbl 0996.53030
Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Ac. Sc. 174 (1922), 593–595. (1922)
Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie), Ann. Ec. Norm. Sup. 40 (1923), 325–412, part one. (1923) | MR 1509253
Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie, suite), Ann. Ec. Norm. Sup. 41 (1924), 1–25, part one (continuation). (1924) | MR 1509255
Les récentes généralisations de la notion d’espace, Bull. Sc. Math. 48 (1924), 294–320. (1924)
Sur les variétés à connexion affine et la théorie de la relativité généralisée (deuxième partie), Ann. Ec. Norm. Sup. 42 (1925), 17–88, part two. English transl. of both parts by A. Magnon and A. Ashtekar, On manifolds with an affine connection and the theory of general relativity. Napoli: Bibliopolis (1986). (1925) | MR 1509263
A class of Riemannian homogeneous spaces, J. Differential Geom. 4 (1970), 13–20. (1970) | MR 0270295 | Zbl 0197.18302
A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15–36. (1990) | MR 1080209
Classifications of almost contact metric structures, Rev. Roumaine Math. Pures Appl. 37 (1992), 581–599. (1992) | MR 1172273
Conformally parallel $G_2$-structures on a class of solvmanifolds, Math. Z. 252 (2006), 825–848. | MR 2206629
The intrinsic torsion of $SU(3)$ and $G_2$ structures, in O. Gil-Medrano et. al. (eds.), Proc. Intern. Conf. Valencia, Spain, July 8-14, 2001, Singapore, World Scientific, 115–133 (2002). | MR 1922042 | Zbl 1024.53018
On the geometry of closed $G_2$-structures, math.DG/0306362. | Zbl 1122.53026
Curvature decomposition of $G_2$ manifolds, to appear.
Conformal equivalence between certain geometries in dimension $6$ and $7$, math.DG/0607487.
Cohomogeneity-one $G_{2}$-structures, J. Geom. Phys. 44 (2002), 202–220. | MR 1969782 | Zbl 1025.53024
Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004), 513–528. | MR 2114426 | Zbl 1069.53041
Fluxes and branes in type II vacua and M-theory geometry with $G_2$ and $Spin(7)$ holonomy, hep-th/0111165.
Harmonic spinors of Dirac operators of connections with torsion in dimension $4$, Classical Quantum Gravity 18 (2001), 253–265. | MR 1807617
The embedding of gauged $n=8$ supergravity into $d=11$ supergravity, Nuclear Phys. B 255 (1985), 29. (1985) | MR 0792244
Residual supersymmetry of compactified $D=10$ Supergravity, Nuclear Phys. B 283 (1987), 165. (1987)
Classification of trivectors of an eight-dimensional real vector space, Linear and Multilinear Algebra 13 (1983), 3–39. (1983) | MR 0691457
HyperKähler torsion structures invariant by nilpotent Lie groups, Classical Quantum Gravity 19 (2002), 551–562. | MR 1889760 | Zbl 1001.53031
Locally conformal Kähler geometry, Progr. Math. vol. 155, Birkhäuser Verlag, 1998. (1998) | MR 1481969
$M$-theory on manifolds of $G_2$-holonomy: the first twenty years, hep-th/0201062.
A classification of Riemannian manifolds with structure group $\mathrm{Spin}(7)$, Ann. Mat. Pura Appl. 143 (1986), 101–122. (1986) | MR 0859598
An example of a compact calibrated manifold associated with the exceptional Lie group $G_2$, J. Differential Geom. 26 (1987), 367–370. (1987) | MR 0906398
Riemannian manifolds with structure group $\mathrm{G}_2$, Ann. Mat. Pura Appl. 132 (1982), 19–45. (1982) | MR 0696037
Maximally supersymmetric solutions of ten- and eleven-dimensional supergravities, hep-th/0211089.
Almost contact homogeneous manifolds, Riv. Mat. Univ. Parma (5) 3 (1994), 321–332. (1994) | MR 1342063 | Zbl 0847.53036
Almost contact homogeneous structures, Boll. Un. Mat. Ital. A 9 (1995), 299–311. (1995) | MR 1336238 | Zbl 0835.53039
Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998), 1–22. (1998) | MR 1684209 | Zbl 0980.53060
Almost Kähler $4$-dimensional Lie groups with $J$-invariant Ricci tensor, Differential Geom. Appl. 23 (2005), 26-37. | MR 2148908 | Zbl 1084.53025
Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math. 189 (2004), 439–450. | MR 2101226 | Zbl 1114.53043
Families of strong KT structures in six dimensons, Comment. Math. Helv. 79 (2004), 317–340. | MR 2059435
Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117–146. (1980) | MR 0600828 | Zbl 0462.53027
Dirac operators in Riemannian geometry, Grad. Stud. Math. vol. 25, 2000. | MR 1777332 | Zbl 0949.58032
Weak $\mathrm{Spin}(9)$-structures on $16$-dimensional Riemannian manifolds, Asian Math. J. 5 (2001), 129–160. | MR 1868168
$Spin(9)$-structures and connections with totally skew-symmetric torsion, J. Geom. Phys. 47 (2003), 197–206. | MR 1991473 | Zbl 1039.53049
On types of non-integrable geometries, Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003), 99–113. | MR 1982437 | Zbl 1079.53041
$G_2$-manifolds with parallel characteristic torsion, math.DG/0604441, to appear in Differential Geom. Appl. | MR 2373939 | Zbl 1141.53019
On the first eigenvalue of the Dirac operator on $6$-dimensional manifolds, Ann. Global Anal. Geom. 3 (1985), 265–273. (1985) | MR 0813132 | Zbl 0577.58034
Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), 303–336. | MR 1928632 | Zbl 1127.53304
Almost contact manifolds, connections with torsion and parallel spinors, J. Reine Angew. Math. 559 (2003), 217–236. | MR 1989651 | Zbl 1035.53058
Killing spinor equations in dimension $7$ and geometry of integrable $\mathrm{G}_2$-manifolds, J. Geom. Phys. 48 (2003), 1–11. | MR 2006222
Einstein manifolds of dimension five with small eigenvalues of the Dirac operator, J. Differential Geom. 19 (1989), 263–279. (1989) | MR 0982174
$7$-dimensional compact Riemannian manifolds with Killing spinors, Comm. Math. Phys. 133 (1990), 543–561. (1990) | MR 1079795 | Zbl 0722.53038
On nearly parallel $\mathrm{G}_2$-structures, J. Geom. Phys. 3 (1997), 256–286. (1997) | MR 1484591
The Einstein-Dirac equation on Riemannian spin manifolds, J. Geom. Phys. 33 (2000), 128–172. | MR 1738150 | Zbl 0961.53023
Ein Kriterium für die formale Selbstadjungiertheit des Dirac-Operators, Coll. Math. XL (1979), 239–247. (1979) | MR 0547866 | Zbl 0426.58023
Existence of supersymmetric Hermitian metrics with torsion on non-Kähler manifolds, hep-th/0509028.
On Hermitian geometry of complex surfaces, in O. Kowalski et al. (ed.), Complex, contact and symmetric manifolds. In honor of L. Vanhecke. Selected lectures from the international conference “Curvature in Geometry" held in Lecce, Italy, June 11-14, 2003. Birkhäuser, Progr. Math. 234 (2005), 153–163. | MR 2105147 | Zbl 1085.53065
Almost Hermitian structure on $S^6$, Hokkaido Math. J. 7 (1978), 206–213. (1978) | MR 0509406
Twisted multiplets and new supersymmetric nonlinear sigma models, Nuclear Phys. B 248 (1984), 157. (1984) | MR 0776369
Fivebranes wrapped on SLAG three-cycles and related geometry, hep-th/0110034.
Superstrings with intrinsic torsion, Phys. Rev. D (3) 69 (2004), 086002. | MR 2095098
Structures de Weyl-Einstein, espaces de twisteurs et variétés de type $S^1 \times S^3$, J. Reine Angew. Math. 469 (1995), 1–50. (1995) | MR 1363825
Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. Ser. VII 2 (1997), 257–289. (1997) | MR 1456265 | Zbl 0876.53015
Hyper-Hermitian metrics with symmetry, J. Geom. Phys. 25 (1998), 291–304. (1998) | MR 1619847 | Zbl 0945.53042
The spectral geometry of a Riemannian manifold, J. Differential Geom. 10 (1975), 601–618. (1975) | MR 0400315 | Zbl 0316.53035
Supersymmetric domain walls from metrics of special holonomy, Nuclear Phys. B 623 (2002), 3–46. | MR 1883449
Locally Sasakian manifolds, Classical Quantum Gravity 17 (2000), L105–L115. | MR 1791091
Equivariant $\eta $-invariants on homogeneous spaces, Math. Z. 232 (1999), 1–42. (1999) | MR 1714278 | Zbl 0941.58016
Integrabilty of almost Kähler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96–100. (1969) | MR 0238238
Geometric model for complex non-Kähler manifolds with $\mathrm{SU}(3)$-structure, Comm. Math. Phys. 251 (2004), 65–78. | MR 2096734
Naturally reductive metrics of nonpositive Ricci curvature, Proc. Amer. Math. Soc. 91 (1984), 287–290. (1984) | MR 0740188 | Zbl 0513.53049
Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), 19–37. | MR 1782143 | Zbl 0993.53016
Nearly Kähler manifolds, J. Differential Geom. 4 (1970), 283–309. (1970) | MR 0267502 | Zbl 0201.54401
Weak holonomy groups, Math. Z. 123 (1971), 290–300. (1971) | MR 0293537 | Zbl 0222.53043
The structure of nearly Kähler manifolds, Math. Ann. 223 (1976), 233–248. (1976) | MR 0417965 | Zbl 0345.53019
The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35–58. (1980) | MR 0581924 | Zbl 0444.53032
Superstring theory. Volume 2: Loop amplitudes, anomalies and phenomenology, Cambridge Monogr. Math. Phys. 1987. (1987) | MR 0878144
The Weyl character formula, the half-spin representations, and equal rank subgroups, Proc. Natl. Acad. Sci. USA 95 (1998), no. 15, 8441–8442. (1998) | MR 1639139
Six-dimensional Riemannian manifolds with a real Killing spinor, Ann. Glob. Anal. Geom. 8 (1990), 43–59. (1990) | MR 1075238 | Zbl 0704.53050
Classification of trivectors of rank $8$, (in Russian), Dokl. Akad. Nauk SSSR 2 (1935), 353–355. (1935)
Algebra of trivectors II, (in Russian), Trudy Sem. Vektor. Tenzor. Anal. 6 (1948), 28–124. (1948) | MR 0057861
General relativity with spin and torsion: Foundations and prospects, Rev. Modern Phys. 48 (1976), 393–416. (1976) | MR 0439001
Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rep. 258 (1995), 1–171. (1995) | MR 1340371
Differential Geometry, Lie Groups and Symmetric Spaces, Pure Appl. Math. vol. 80, Acad. Press, New York, 1978. (1978) | MR 0514561 | Zbl 0451.53038
Harmonic spinors, Adv. Math. 14 (1974), 1–55. (1974) | MR 0358873 | Zbl 0284.58016
The geometry of three-forms in six and seven dimensions, J. Differential Geom. 55 (2000), 547–576. | MR 1863733
Stable forms and special metrics, math.DG/0107101; Contemp. Math. 288 (2001), 70–89. | MR 1871001 | Zbl 1004.53034
Ultraviolet behavior of two-dimensional supersymmetric nonlinear sigma models, Nuclear Phys. B 289 (1987), 264–276. (1987)
Finitness and anomalies in $(4,0)$ supersymmetric sigma models, Nuclear Phys. B 381 (1992), 360. (1992)
Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B 379 (1996), 80–86. (1996) | MR 1396267
Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185–202. | MR 1862801
Lectures On Nonlinear Sigma Models And Strings, PRINT-87-0480(Cambridge); Lectures given at Super Field Theories Workshop, Vancouver, Canada, July 25-Aug 6, 1986. (1986) | MR 1102925
A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997–1028. (1970) | MR 0277558 | Zbl 0217.36203
Formally self adjointness for the Dirac operator on homogeneous spaces, Osaka J. Math. 12 (1975), 173–185. (1975) | MR 0376962 | Zbl 0317.58019
Recent developments in General Relativity, Oxford, Pergamon Press & Warszawa, PWN, 1962. (1962) | MR 0164694
Connections with torsion, parallel spinors and geometry of $\mathrm{Spin}(7)$-manifolds, Math. Res. Lett. 11 (2004), 171–186. | MR 2067465
Quaternionic Kähler and hyperKähler manifolds with torsion and twistor spaces, J. Reine Angew. Math. 567 (2004), 215–233. | MR 2038309
Vanishing theorems and string background, Classical Quantum Gravity 18 (2001), 1089–1110. | MR 1822270
Locally conformal parallel $G_2$- and $\mathrm{Spin}(7)$-structures, math.DG/0509038, to appear in Math. Res. Lett. 13 (2006). | MR 2231110
Some simple examples of almost Kähler non-Kähler structures, Math. Ann. 305 (1996), 639–649. (1996) | MR 1399708 | Zbl 0858.53027
Imbeddings of Stiefel manifolds into Grassmannians, Duke Math. J. 42 (1975), 397–407. (1975) | MR 0375164 | Zbl 0335.53042
Compact hypercomplex and quaternionic manifolds, J. Differential Geom. 35 (1992), 743–761. (1992) | MR 1163458 | Zbl 0735.53050
Compact Riemannian $7$-manifolds with holonomy $G_2$. I, J. Differential Geom. 43 (1996), 291–328. (1996) | MR 1424428
Compact Riemannian $7$-manifolds with holonomy $G_2$. II, J. Differential Geom. 43 (1996), 329–375. (1996) | MR 1424428
Compact $8$-manifolds with holonomy $\mathrm{Spin}(7)$, Invent. Math. 123 (1996), 507–552. (1996) | MR 1383960
Compact manifolds with special holonomy, Oxford Science Publ., 2000. | MR 1787733 | Zbl 1027.53052
On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), 35–42. (1983) | MR 0686346 | Zbl 0521.53048
A note on a Riemannian space with Sasakian $3$-structure, Natur. Sci. Rep. Ochanomizu Univ. 22 (1971), 1–2. (1971) | MR 0303449 | Zbl 0228.53033
On a contact 3-structure, Math. Z. 238 (2001), 829–832. | MR 1872576 | Zbl 1004.53058
Complex structures on the Iwasawa manifold, Adv. Geom. 4 (2004), 165–179. | MR 2055676 | Zbl 1059.22012
Lorentz invariance and the gravitational field, J. Math. Phys. 2 (1961), 212–221. (1961) | MR 0127952 | Zbl 0095.22903
Das Erlanger Programm, Ostwalds Klassiker der exakten Wissenschaften Band 253, Verlag H. Deutsch, Frankfurt a. M., 1995. (1995) | Zbl 0833.01037
An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Global Anal. Geom. 4 (1986), 291–325. (1986) | MR 0910548 | Zbl 0629.53058
Killing spinors on Kähler manifolds, Ann. Global Anal. Geom. 11 (1993), 141–164. (1993) | MR 1225435 | Zbl 0810.53033
Integrability conditions for almost Hermitian and almost Kähler $4$-manifolds, math.DG/0605611.
$K$-spaces of maximal rank, Mat. Zametki 22 (1977), 465–476. (1977) | MR 0474103
Differential geometry of quasi-Sasakian manifolds, Sb. Math. 193 (2002), 1173-1201; translation from Mat. Sb. 193 (2002), 71–100. (193 ) | MR 1934545
Foundations of differential geometry I, Wiley Classics Library, Wiley Inc., Princeton, 1963, 1991. (1963) | Zbl 0119.37502
Foundations of differential geometry II, Wiley Classics Library, Wiley Inc., Princeton, 1969, 1996. (1969)
An anisotropic universe with torsion, Phys. Lett. A 43 (1973), 63–64. (1973)
On differential geometry and homogeneous spaces II, Proc. N. A. S. 42 (1956), 354–357. (1956) | MR 0088017 | Zbl 0075.31603
A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), 447–501. (1999) | MR 1719734 | Zbl 0952.17005
Dirac cohomology for the Cubic Dirac operator, in: Joseph, Anthony (ed.) et al., Studies in memory of Issai Schur. Basel: Birkhäuser. Progr. Math. 210 (2003), 69–93. | MR 1985723 | Zbl 1165.17301
The generalized Cayley map from an algebraic group to its Lie algebra, preprint (arXiv:math.RT/0109066v1, 10 Sep 2001), to appear in The Orbit Method in Geometry and Physics (A. A. Kirillov Festschrift), Progr. Math. (2003). | MR 1995382 | Zbl 1072.20051
Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003), 125–160. | MR 2024648 | Zbl 1043.53041
Four-dimensional naturally reductive homogeneous spaces, Differential geometry on homogeneous spaces, Conf. Torino/Italy 1983, Rend. Sem. Mat., Torino, Fasc. Spec. (1983), 223-232. (1983) | MR 0829007 | Zbl 0631.53039
A generalization of a theorem on naturally reductive homogeneous spaces, Proc. Amer. Math. Soc. 91 (1984), 433–435. (1984) | MR 0744644 | Zbl 0542.53029
Classification of five-dimensional naturally reductive spaces, Math. Proc. Cambridge Philos. Soc. 97 (1985), 445–463. (1985) | MR 0778679 | Zbl 0555.53024
A classification of $5$-dimensional $\varphi $-symmetric spaces, Tensor, N. S. 46 (1987), 379–386. (1987)
Differential geometry, Dover Publ., inc., New York, 1991, unabridged republication of the 1963 printing. (1991) | MR 1118149
Harmonic spinors on homogeneous spaces, Represent. Theory 4 (2000), 466–473. | MR 1780719 | Zbl 0972.22008
Existence of supersymmetric string theory with torsion, J. Differential Geom. 70 (2005), 143–182 and hep-th/0411136. | MR 2192064 | Zbl 1102.53052
Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7–9. (1963) | MR 0156292 | Zbl 0136.18401
Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett. Math. Phys. 13 (1987), 331–344. (1987) | MR 0895296 | Zbl 0624.53034
Les spineurs-twisteurs sur une variété spinorielle compacte, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 381–385. (1988) | MR 0934624 | Zbl 0641.53014
Lectures on String Theory, Springer-Verlag, 1989. (1989) | MR 1028064
Sasaki-Einstein Manifolds and Volume Minimisation, hep-th/0603021.
Special almost Hermitian geometry, J. Geom. Phys. 55 (2005), 450–470. | MR 2162420
Classification of $G_2$-structures, J. London Math. Soc. II. Ser. 53 (1996), 407–416. (1996) | MR 1373070
Almost Hermitian structures and quaternionic geometries, Differential Geom. Appl. 21 (2004), 199–214. | MR 2073825
Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59–68. (1989) | MR 1029845
Principal Series Representations and Harmonic Spinors, to appear in Adv. Math. (preprint at http://www.math.okstate.edu/~zierau/papers.html). | MR 2186917 | Zbl 1085.22011
The geometry of (super) conformal quantum mechanics, Comm. Math. Phys. 213 (2000), 1–17. | MR 1782142
The volume of small geodesic balls for a metric connection, Compositio Math. 46 (1982), 121–132. (1982) | MR 0660156
Volumes of geodesic balls and spheres associated to a metric connection with torsion, Contemp. Math. 288 (2001), 119–128. | MR 1871004 | Zbl 1005.53012
Naturally reductive Riemannian homogeneous structure on a homogeneous real hypersurface in a complex space form, Boll. Un. Mat. Ital. A (7) 9 (1995), 391–400. (1995) | MR 1336245 | Zbl 0835.53068
Naturally reductive Riemannian homogeneous structures on some classes of generic submanifolds in complex space forms, Geom. Dedicata 62 (1996), 253–268. (1996) | MR 1406440 | Zbl 0860.53032
The classification of naturally reductive homogeneous real hypersurfaces in complex projective space, Arch. Math. 69 (1997), 523–528. (1997) | MR 1480520 | Zbl 0901.53037
Nearly Kähler geometry and Riemannian foliations, Asian J. Math. 6 (2002) 481–504. | MR 1946344 | Zbl 1041.53021
On nearly-Kähler geometry, Ann. Global Anal. Geom. 22 (2002), 167–178. | MR 1923275 | Zbl 1020.53030
A four-dimensional example of Ricci-flat metric admitting almost-Kähler non-Kähler structure, ESI preprint 477, 1997; Classical Quantum Gravity 16 (1999), L9–L16. (1997) | MR 1682582
Distinguished dimensions for special Riemannian geometries, math.DG/0601020.
Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1–30. (1972) | MR 0318398 | Zbl 0249.22004
Spinors and torsion in general relativity, Found. of Phys. 13 (1983), 325-339. (1983) | MR 0838841
Potential functions of HKT spaces, Classical Quantum Gravity 18 (2001), 4711–4714. | MR 1894924 | Zbl 1007.53038
Superconformal symmetry and HyperKähler manifolds with torsion, Comm. Math. Phys. 241 (2003), 177–189. | MR 2013757
The Killing equation with higher order potentials, Ph. D. Thesis, Humboldt-Universität zu Berlin, 2006/07.
Über trilineare alternierende Formen in sechs und sieben Veränderlichen und die durch sie definierten geometrischen Gebilde, Druck von B. G. Teubner in Leipzig 1907, Dissertation an der Universität Greifswald. (1907)
Modified Calabi-Yau manifolds with torsion, in: Yau, Shing-Tung (ed.), Essays on mirror manifolds. Cambridge, MA: International Press. 1992, 480–488. (1992) | MR 1191438 | Zbl 0859.53050
Einstein–Cartan theory as a theory of defects in space-time, Amer. J. Phys. 71 (2003), 1303–1313. | MR 2016766
Riemannian geometry and holonomy groups, Pitman Res. Notes Math. Ser. 201, Jon Wiley & Sons, 1989. (1989) | MR 1004008 | Zbl 0685.53001
Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311–333. | MR 1812058
A tour of exceptional geometry, Milan J. Math. 71 (2003), 59–94. | MR 2120916 | Zbl 1055.53039
On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677–684. (1987) | MR 0905633 | Zbl 0637.53053
Almost hermitian structures with parallel torsion, PhD thesis, Humboldt-Universität zu Berlin, 2006. | MR 2360237 | Zbl 1137.53014
Der Ricci-Kalkül, Grundlehren Math. Wiss. 10, Springer-Verlag Berlin, 1924. (1924) | MR 0516659
Klassifizierung der alternierenden Größen dritten Grades in $7$ Dimensionen, Rend. Circ. Mat. Palermo 55 (1931), 137–156. (1931)
Diracsches Elektron im Schwerefeld I, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys.-Math. Klasse 1932, Verlag der Akademie der Wissenschaften Berlin, 1932, 436–460. (1932)
On the transitivity of holonomy systems, Ann. of Math. 76 (1962), 213–234. (1962) | MR 0148010 | Zbl 0106.15201
The Dirac operator on homogeneous spaces and representations of reductive Lie groups I, Amer. J. Math. 109 (1987), 283–301. (1987) | MR 0882424 | Zbl 0649.58031
The Dirac operator on homogeneous spaces and representations of reductive Lie groups II, Amer. J. Math. 109 (1987), 499–520. (1987) | MR 0892596 | Zbl 0669.22003
Extended supersymmetric $\sigma $-models on group manifolds, Nuclear Phys. B 308 (1988), 662–698. (1988) | MR 0967938
Lie algebras, Lecture Notes in Math. 1999. (1999)
Superstrings with torsion, Nuclear Phys. B 274 (1986), 253–284. (1986) | MR 0851702
Differentialgeometrie. II: Theorie der Flächenmetrik, Sammlung Göschen, W. de Gruyter, Berlin, 1969. (1969) | MR 0239514 | Zbl 0169.23501
Aspects symplectiques de la géométrie quaternionique, C. R. Acad. Sci. Paris, Sér. I 308 (1989), 225–228. (1989) | MR 0986384 | Zbl 0661.53023
HyperKähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421–450. (1991) | MR 1096180 | Zbl 0711.53051
Weakening holonomy, ESI preprint No. 816 (2000); in S. Marchiafava et. al. (eds.), Proc. of the Second Meeting on Quaternionic Structures in Mathematics and Physics, Roma 6-10 September 1999, World Scientific, Singapore 2001, 405–415. (1999) | MR 1848678
A class of cosmological models with torsion and spin, Acta Phys. Polon. B 6 (1975), 537–554. (1975)
Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349–379. (1989) | MR 1000553 | Zbl 0677.53043
Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467–468. (1976) | MR 0402764 | Zbl 0324.53031
On the structure of the Einstein-Cartan equations, Sympos. Math. 12 (1973), 139–162. (1973) | MR 0376097 | Zbl 0273.53021
Spin and torsion may avert gravitational singularities, Nature Phys. Sci. 242 (1973) 7. (1973)
Gauge and optical aspects of gravitation, Classical Quantum Gravity 16 (1999), 157–175. (1999) | MR 1728438 | Zbl 0948.83010
Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Notes Series, vol. 83, Cambridge Univ. Press, Cambridge, 1983. (1983) | MR 0712664 | Zbl 0509.53043
Geodesic spheres and naturally reductive homogeneous spaces, Riv. Mat. Univ. Parma 10 (1984), 123–131. (1984) | MR 0777319 | Zbl 0563.53040
Naturally reductive homogeneous spaces and generalized Heisenberg groups, Compositio Math. 52 (1984), 389–408. (1984) | MR 0756730 | Zbl 0551.53028
On locally conformal almost kähler manifolds, Israel J. Math. 24 (1976), 338–351. (1976) | MR 0418003 | Zbl 0335.53055
Locally conformal Kähler manifolds with parallel Lee form, Rend. Math. Roma 12 (1979), 263–284. (1979) | MR 0557668 | Zbl 0447.53032
Supergravity, Phys. Rep. 68 (1981), 189–398. (1981) | MR 0615178 | Zbl 0465.53041
One kind of multisymplectic structures on $6$-manifolds, Proceedings of the Colloquium on Differential Geometry, Debrecen, 2000, 375–391 (2001). | MR 1859316
HyperKähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002), 679–712. | MR 1958088
Classification of trivectors of a $9$-dimensional space, Sel. Math. Sov. 7 (1988), 63–98. Translated from Tr. Semin. Vektorn. Tensorm. Anal. Prilozh. Geom. Mekh. Fiz. 18 (1978), 197–233. (1988) | MR 0504529 | Zbl 0648.15021
Parallel spinors and parallel forms, Ann. Global Anal. Geom. 7 (1989), 59–68. (1989) | MR 1029845 | Zbl 0688.53007
On normal homogeneous Einstein manifolds, Ann. Sci. Éc. Norm. Sup., $4^{e}$ série 18 (1985), 563–633. (1985) | MR 0839687 | Zbl 0598.53049
Real trivectors of rank seven, Linear and Multilinear Algebra 10 (1981), 183–204. (1981) | MR 0630147 | Zbl 0464.15001
Generalised $G_2$-manifolds, Comm. Math. Phys. 265 (2006), 275–303, math.DG/0411642. | MR 2231673 | Zbl 1154.53014
Special metrics and Triality, math.DG/0602414.
Partially harmonic spinors and representations of reductive Lie groups, J. Funct. Anal. 15 (1974), 117–154. (1974) | MR 0393351 | Zbl 0279.22009
On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampŕe equations. I, Comm. Pure Appl. Math. 31 (1978), 339–411. (1978) | MR 0480350
The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces, Comment. Math. Helv. 52 (1977), 573–590. (1977) | MR 0474145 | Zbl 0368.53033
Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), 351–358. (1982) | MR 0661203 | Zbl 0469.53043