We present very short and simple proofs of such facts as co-frame distributivity of sublocales, zero-dimensionality of the resulting co-frames, Isbell’s Density Theorem and characteristic properties of fit and subfit frames, using sublocale sets.
@article{108016, author = {Jorge Picado and Ale\v s Pultr}, title = {Sublocale sets and sublocale lattices}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {409-418}, zbl = {1164.06313}, mrnumber = {2283021}, language = {en}, url = {http://dml.mathdoc.fr/item/108016} }
Picado, Jorge; Pultr, Aleš. Sublocale sets and sublocale lattices. Archivum Mathematicum, Tome 042 (2006) pp. 409-418. http://gdmltest.u-ga.fr/item/108016/
Introduction to Lattices and Order, Second Edition, Cambridge University Press, 2001. | MR 1902334 | Zbl 1002.06001
Atomless parts of spaces, Math. Scand. 31 (1972), 5–32. (1972) | MR 0358725 | Zbl 0246.54028
Stone Spaces, Cambridge Stud. Adv. Math. No 3, Cambridge University Press, 1983. (1983) | MR 0698074
Categories for the Working Mathematician, Springer-Verlag, New York, 1971. (1971) | MR 0354798 | Zbl 0232.18001
Locales, In: M. C. Pedicchio and W. Tholen (Eds.), Categorical Foundations - Special Topics in Order, Topology, Algebra and Sheaf Theory, Encyclopedia of Mathematics and its Applications, Vol. 97, Cambridge University Press, 2003, pp. 49–101. | MR 2056581 | Zbl 1080.06010
Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186–190. (1970) | MR 0265242 | Zbl 0201.01802
Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 324 (1972), 507–530. (1972) | MR 0300949 | Zbl 0323.06011
Frames in Priestley duality, Cahiers Topologie Géom. Différentielle Catég. XXIX (1988), 193–202. (1988) | MR 0975372
A Priestley view of spatialization of frames, Cahiers Topologie Géom. Différentielle Catég. XLI (2000), 225–238. | MR 1784219 | Zbl 0970.06006
The lattice theoretic part of topological separation properties, Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48. (1978) | MR 0493959 | Zbl 0396.54014