In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category $\mathcal {K}$ is introduced, as a pair (comonad, monad) over $\mathcal {K}^{\bf 2}$. The link with existing notions in terms of morphism classes is given via the respective Eilenberg–Moore categories.
@article{108015, author = {Marco Grandis and Walter Tholen}, title = {Natural weak factorization systems}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {397-408}, zbl = {1164.18300}, mrnumber = {2283020}, language = {en}, url = {http://dml.mathdoc.fr/item/108015} }
Grandis, Marco; Tholen, Walter. Natural weak factorization systems. Archivum Mathematicum, Tome 042 (2006) pp. 397-408. http://gdmltest.u-ga.fr/item/108015/
Weak factorization systems and topological functors, Appl. Categorical Structures 10 (2002), 237–249. | MR 1916156 | Zbl 0997.18002
Abstract and Concrete Categories, Wiley (New York 1990). (1990) | MR 1051419
Decidable (= separable) objects and morphisms in lextensive categories, J. Pure Appl. Algebra 110 (1996), 219–240. (1996) | MR 1393114 | Zbl 0858.18004
Algèbres de decompositions et précatégories, Diagrammes 4 (Suppl.) (1980). (1980) | MR 0684912 | Zbl 0497.18015
Limits in double categories, Cah. Topol. Géom. Différ. Catég. 40 (1999), 162–220. (1999) | MR 1716779 | Zbl 0939.18007
Formal category theory: adjointness for 2-categories, Lecture Notes in Math. Vol. 391, Springer-Verlag (Berlin 1974). (1974) | MR 0371990 | Zbl 0285.18006
Factorization systems as Eilenberg–Moore algebras, J. Pure Appl. Algebra 85 (1993), 57–72. (1993) | MR 1207068 | Zbl 0778.18001
Lax factorization algebras, J. Pure Appl. Algebra 175 (2002), 355–382. | MR 1935984 | Zbl 1013.18001
Factorization, fibration and torsion, preprint (York University 2006). | MR 2369170 | Zbl 1184.18009
Coherence for factorization algebras, Theory Appl. Categories 10 (2002), 134–147. | MR 1883483 | Zbl 0994.18001