Sur la $L^2$ -cohomologie des variétés à courbure négative
Yeganefar, Nader
Duke Math. J., Tome 121 (2004) no. 1, p. 145-180 / Harvested from Project Euclid
We give a topological interpretation of the space of $L^2$ -harmonic forms of finite-volume manifolds with sufficiently pinched negative curvature. We give examples showing that this interpretation fails if the curvature is not sufficiently pinched and that our result is sharp with respect to the pinching constants. The method consists first in comparing $L^2$ -cohomology with weighted $L^2$ -cohomology thanks to previous works done by T. Ohsawa, and then in identifying these weighted spaces.
Publié le : 2004-03-15
Classification:  58J10
@article{1080137205,
     author = {Yeganefar, Nader},
     title = {Sur la $L^2$ -cohomologie des vari\'et\'es \`a courbure n\'egative},
     journal = {Duke Math. J.},
     volume = {121},
     number = {1},
     year = {2004},
     pages = { 145-180},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1080137205}
}
Yeganefar, Nader. Sur la $L^2$ -cohomologie des variétés à courbure négative. Duke Math. J., Tome 121 (2004) no. 1, pp.  145-180. http://gdmltest.u-ga.fr/item/1080137205/