Schubert polynomials and quiver formulas
Buch, Anders S. ; Kresch, Andrew ; Tamvakis, Harry ; Yong, Alexander
Duke Math. J., Tome 121 (2004) no. 1, p. 125-143 / Harvested from Project Euclid
Fulton's universal Schubert polynomials [F3] represent degeneracy loci for morphisms of vector bundles with rank conditions coming from a permutation. The quiver formula of Buch and Fulton [BF] expresses these polynomials as an integer linear combination of products of Schur determinants. We present a positive, nonrecursive combinatorial formula for the coefficients. Our result is applied to obtain new expansions for the Schubert polynomials of Lascoux and Schützenberger [LS1] and explicit Giambelli formulas in the classical and quantum cohomology ring of any partial flag variety.
Publié le : 2004-03-15
Classification:  05E15 14M15
@article{1080137204,
     author = {Buch, Anders S. and Kresch, Andrew and Tamvakis, Harry and Yong, Alexander},
     title = {Schubert polynomials and quiver formulas},
     journal = {Duke Math. J.},
     volume = {121},
     number = {1},
     year = {2004},
     pages = { 125-143},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1080137204}
}
Buch, Anders S.; Kresch, Andrew; Tamvakis, Harry; Yong, Alexander. Schubert polynomials and quiver formulas. Duke Math. J., Tome 121 (2004) no. 1, pp.  125-143. http://gdmltest.u-ga.fr/item/1080137204/