Ideal tubular hypersurfaces in real space forms
Fastenakels, Johan
Archivum Mathematicum, Tome 042 (2006), p. 295-305 / Harvested from Czech Digital Mathematics Library

In this article we give a classification of tubular hypersurfaces in real space forms which are $\delta (2,2,\ldots ,2)$-ideal.

Publié le : 2006-01-01
Classification:  53C40,  53C42
@article{108009,
     author = {Johan Fastenakels},
     title = {Ideal tubular hypersurfaces in real space forms},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {295-305},
     zbl = {1164.53321},
     mrnumber = {2260389},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108009}
}
Fastenakels, Johan. Ideal tubular hypersurfaces in real space forms. Archivum Mathematicum, Tome 042 (2006) pp. 295-305. http://gdmltest.u-ga.fr/item/108009/

B. Y. Chen Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993), 568-578. (1993) | MR 1216703 | Zbl 0811.53060

B. Y. Chen Tubular hypersurfaces satisfying a basic equality., Soochow Journal of Mathematics 20 No. 4 (1994), 569-586. (1994) | MR 1309490 | Zbl 0827.53045

B. Y. Chen Some new obstructions to minimal and Lagrangian isometric immersions, Japan J. Math. 26 (2000), 105-127. | MR 1771434 | Zbl 1026.53009

B. Y. Chen Strings of Riemannian invariants, inequalities, ideal immersions and their applications, in Third Pacific Rim Geom. Conf., (Intern. Press, Cambridge, MA), (1998), 7-60. (1998) | MR 1751063 | Zbl 1009.53041

R. Harvey; H. B. Lawson, Jr. Calibrated geometries, Acta Math. 148 (1982), 47-157. (1982) | MR 0666108 | Zbl 0584.53021