On modified Meyer-König and Zeller operators of functions of two variables
Rempulska, Lucyna ; Skorupka, Mariola
Archivum Mathematicum, Tome 042 (2006), p. 273-284 / Harvested from Czech Digital Mathematics Library

This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska, L., Tomczak, K., On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004.) and (Rempulska, L., Skorupka, M., On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print).).

Publié le : 2006-01-01
Classification:  41A35,  41A36
@article{108007,
     author = {Lucyna Rempulska and Mariola Skorupka},
     title = {On modified Meyer-K\"onig and Zeller operators of functions of two variables},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {273-284},
     zbl = {1164.41338},
     mrnumber = {2260387},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108007}
}
Rempulska, Lucyna; Skorupka, Mariola. On modified Meyer-König and Zeller operators of functions of two variables. Archivum Mathematicum, Tome 042 (2006) pp. 273-284. http://gdmltest.u-ga.fr/item/108007/

Abel U. The moments for the Meyer-König and Zeller operators, J. Approx. Theory 82 (1995), 352–361. (1995) | MR 1348726 | Zbl 0828.41009

Alkemade J. A. H. The second moment for the Meyer-König and Zeller operators, J. Approx. Theory 40 (1984), 261–273. (1984) | MR 0736073 | Zbl 0575.41013

Abel U.; Della Vecchia B. Enhanced asymptotic approximation by linear operators, Facta Univ., Ser. Math. Inf. 19 (2004), 37–51.

Becker M.; Nessel R. J. A global approximation theorem for Meyer-König and Zeller operator, Math. Z. 160 (1978), 195–206. (1978) | MR 0510745

Chen W. On the integral type Meyer-König and Zeller operators, Approx. Theory Appl. 2(3) (1986), 7–18. (1986) | MR 0877624 | Zbl 0613.41021

De Vore R. A. The Approximation of Continuous Functions by Positive Linear operators, New York, 1972. (1972)

Fichtenholz G. M. Calculus, Vol. 1, Warsaw, 1964. (1964)

Guo S. On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation, J. Approx. Theory 56 (1989), 245–255. (1989) | MR 0990339

Gupta V. A note on Meyer-König and Zeller operators for functions of bounded variation, Approx. Theory Appl. 18(3) (2002), 99–102. | MR 1942355 | Zbl 1073.41506

Hölzle G. E. On the degree of approximation of continuous functions by a class of sequences of linear positive operators, Indag. Math. 42 (1980), 171–181. (1980) | MR 0577572 | Zbl 0427.41013

Kirov G. H. A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153. (1992) | MR 1182946 | Zbl 0838.41017

Kirov G. H.; Popova L. A generalization of the linear positive operators, Math. Balk. New Ser. 7 (1993), 149–162. (1993) | MR 1270375 | Zbl 0833.41016

Lupas A. Approximation properties of the $M_{n}$-operators, Aequationes Math. 5 (1970), 19–37. (1970) | MR 0279495

Meyer-König W.; Zeller K. Bernsteinche Potenzreihen, Studia Math. 19 (1960), 89–94. (1960) | MR 0111965

Rempulska L.; Tomczak K. On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004. | Zbl 1107.41018

Rempulska L.; Skorupka M. On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print). | MR 2252622 | Zbl 1119.41022

Timan A. F. Theory of Approximation of Functions of a Real Variable, Moscow, 1960 (Russian). (1960) | MR 0117478