This paper is motivated by Kirov results on generalized Bernstein polynomials given in (Kirov, G. H., A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153.). We introduce certain modified Meyer-König and Zeller operators in the space of differentiable functions of two variables and we study approximation properties for them. Some approximation properties of the Meyer-König and Zeller operators of differentiable functions of one variable are given in (Rempulska, L., Tomczak, K., On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004.) and (Rempulska, L., Skorupka, M., On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print).).
@article{108007, author = {Lucyna Rempulska and Mariola Skorupka}, title = {On modified Meyer-K\"onig and Zeller operators of functions of two variables}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {273-284}, zbl = {1164.41338}, mrnumber = {2260387}, language = {en}, url = {http://dml.mathdoc.fr/item/108007} }
Rempulska, Lucyna; Skorupka, Mariola. On modified Meyer-König and Zeller operators of functions of two variables. Archivum Mathematicum, Tome 042 (2006) pp. 273-284. http://gdmltest.u-ga.fr/item/108007/
The moments for the Meyer-König and Zeller operators, J. Approx. Theory 82 (1995), 352–361. (1995) | MR 1348726 | Zbl 0828.41009
The second moment for the Meyer-König and Zeller operators, J. Approx. Theory 40 (1984), 261–273. (1984) | MR 0736073 | Zbl 0575.41013
Enhanced asymptotic approximation by linear operators, Facta Univ., Ser. Math. Inf. 19 (2004), 37–51.
A global approximation theorem for Meyer-König and Zeller operator, Math. Z. 160 (1978), 195–206. (1978) | MR 0510745
On the integral type Meyer-König and Zeller operators, Approx. Theory Appl. 2(3) (1986), 7–18. (1986) | MR 0877624 | Zbl 0613.41021
The Approximation of Continuous Functions by Positive Linear operators, New York, 1972. (1972)
Calculus, Vol. 1, Warsaw, 1964. (1964)
On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation, J. Approx. Theory 56 (1989), 245–255. (1989) | MR 0990339
A note on Meyer-König and Zeller operators for functions of bounded variation, Approx. Theory Appl. 18(3) (2002), 99–102. | MR 1942355 | Zbl 1073.41506
On the degree of approximation of continuous functions by a class of sequences of linear positive operators, Indag. Math. 42 (1980), 171–181. (1980) | MR 0577572 | Zbl 0427.41013
A generalization of the Bernstein polynomials, Math. Balk. New Ser. bf 6 (1992), 147–153. (1992) | MR 1182946 | Zbl 0838.41017
A generalization of the linear positive operators, Math. Balk. New Ser. 7 (1993), 149–162. (1993) | MR 1270375 | Zbl 0833.41016
Approximation properties of the $M_{n}$-operators, Aequationes Math. 5 (1970), 19–37. (1970) | MR 0279495
Bernsteinche Potenzreihen, Studia Math. 19 (1960), 89–94. (1960) | MR 0111965
On certain modified Meyer-König and Zeller operators, Grant PB-43-71/2004. | Zbl 1107.41018
On strong approximation by modified Meyer-König and Zeller operators, Tamkang J. Math. (in print). | MR 2252622 | Zbl 1119.41022
Theory of Approximation of Functions of a Real Variable, Moscow, 1960 (Russian). (1960) | MR 0117478