Harmonic multivector fields and the Cauchy integral decomposition in Clifford analysis
Abreu-Blaya, Ricardo ; Bory-Reyes, Juan ; Delanghe, Richard ; Sommen, Frank
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, p. 95-110 / Harvested from Project Euclid
In this paper we study the problem of decomposing a Hölder continuous $k$-grade multivector field $F_{k}$ on the boundary $\Gamma$ of an open bounded subset $\Omega$ in Euclidean space $\R^{n}$ into a sum $F_{k}=F_{k}^{+}+F_{k}^{-}$ of harmonic $k$-grade multivector fields $F_{k}^{\pm}$ in $\Omega_{+}=\Omega$ and $\Omega_{-}=\R^{n}\setminus (\Omega\cup\Gamma)$ respectively. The necessary and sufficient conditions upon $F_{k}$ we thus obtain complement those proved by Dyn'kin in [20,21] in the case where $F_{k}$ is a continuous $k$-form on $\Gamma$. Being obtained within the framework of Clifford analysis and hence being of a pure function theoretic nature, they once more illustrate the importance of the interplay between Clifford analysis and classical real harmonic analysis.
Publié le : 2004-03-14
Classification:  Clifford analysis,  Multivector fields,  Cauchy transform,  30G35,  45B20
@article{1080056163,
     author = {Abreu-Blaya, Ricardo and Bory-Reyes, Juan and Delanghe, Richard and Sommen, Frank},
     title = {Harmonic multivector fields and the Cauchy integral decomposition in 
Clifford analysis},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 95-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1080056163}
}
Abreu-Blaya, Ricardo; Bory-Reyes, Juan; Delanghe, Richard; Sommen, Frank. Harmonic multivector fields and the Cauchy integral decomposition in 
Clifford analysis. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp.  95-110. http://gdmltest.u-ga.fr/item/1080056163/