Semipartial geometries, arising from locally hermitian 1-systems of $W_{5}(q)$
Luyckx, D. ; Thas, J. A.
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, p. 69-76 / Harvested from Project Euclid
It is known that every 1-system of $W_{5}(q)$ is an SPG regulus and thus defines a semipartial geometry. In this paper, the semipartial geometries arising from locally hermitian 1-systems of $W_{5}(q)$, $q$ even, will be investigated. It will be shown that non-isomorphic locally hermitian 1-systems of $W_{5}(q)$ yield non-isomorphic semipartial geometries, which implies the existence of new semipartial geometries.
Publié le : 2004-03-14
Classification:  semipartial geometries,  SPG reguli,  m-systems,  polar spaces,  51A45,  51A50,  51E14,  51E20,  51E30
@article{1080056161,
     author = {Luyckx, D. and Thas, J. A.},
     title = {Semipartial geometries, arising from locally hermitian 1-systems of $W\_{5}(q)$},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 69-76},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1080056161}
}
Luyckx, D.; Thas, J. A. Semipartial geometries, arising from locally hermitian 1-systems of $W_{5}(q)$. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp.  69-76. http://gdmltest.u-ga.fr/item/1080056161/