Calculus in O -algebras with positive squares
Toumi, M.A
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, p. 1-13 / Harvested from Project Euclid
Let $A$ be an $\mathcal{O}$-algebra with positive squares and $F\left( X_{1},...,X_{n}\right) \in\linebreak\mathbb{R}^{+}\left[ X_{1},...,X_{n}\right] $ be a homogeneous polynomial of degree $p$ $\left( p\in\mathbb{N}^{\ast },\text{ }p\neq2\right) $. It is shown that for all $0\leq a_{1},...,a_{n}\in A$ there exists $0\leq a$ $\in A$ such that $F\left( a_{1},...,a_{n}\right) =a^{p}$ . As an application we show that every algebra homomorphism $T$ from an $\mathcal{O}$-algebra $A$\textit{ }with positive squares into an Archimedean semiprime \textit{f-}algebra $B$ is positive. This improves a result of Render [14, Theorem 4.1], who proved it for the case of order bounded multiplicative functional $T$ from an $\mathcal{O}$-algebra $A$ with positive squares into $\mathbb{R}$.
Publié le : 2004-03-14
Classification:  Almost \textit{f-}algebra,  \textit{d}-algebra,  \textit{f-}algebra,  \textit{positive square} algebra,  lattice homomorphism,  $\mathcal{O}$-algebra,  $\mathcal{O}^{\prime}$-algebra,  06F25,  46A40
@article{1080056155,
     author = {Toumi, M.A},
     title = {Calculus in 
 O
-algebras with positive squares},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 1-13},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1080056155}
}
Toumi, M.A. Calculus in 
 O
-algebras with positive squares. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp.  1-13. http://gdmltest.u-ga.fr/item/1080056155/