A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups
Danchev, Peter Vassilev
Archivum Mathematicum, Tome 042 (2006), p. 251-254 / Harvested from Czech Digital Mathematics Library

It is proved that if $G$ is a pure $p^{\omega + n}$-projective subgroup of the separable abelian $p$-group $A$ for $n\in {N}\cup \lbrace 0\rbrace $ such that $|A/G|\le \aleph _0$, then $A$ is $p^{\omega +n}$-projective as well. This generalizes results due to Irwin-Snabb-Cutler (CommentṀathU̇nivṠtṖauli, 1986) and the author (Arch. Math. (Brno), 2005).

Publié le : 2006-01-01
Classification:  20K10
@article{108004,
     author = {Peter Vassilev Danchev},
     title = {A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {251-254},
     zbl = {1152.20045},
     mrnumber = {2260384},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108004}
}
Danchev, Peter Vassilev. A note on the countable extensions of separable $p\sp {\omega+n}$-projective abelian $p$-groups. Archivum Mathematicum, Tome 042 (2006) pp. 251-254. http://gdmltest.u-ga.fr/item/108004/

Countable extensions of torsion abelian groups, Arch. Math. (Brno) 41(3) (2005), 265–273. | MR 2188382 | Zbl 1114.20030

On $p^{\omega +n}$-projective $p$-groups, Comment. Math. Univ. St. Pauli 35(1) (1986), 49–52. | MR 0838187

Purity and subfunctors of the identity, Topics in Abelian Groups, Scott, Foresman and Co., 1963, 121–171. | MR 0169913

Homology and direct sums of countable abelian groups, Math. Z. 101(3) (1967), 182–212. | MR 0218452 | Zbl 0173.02401

On mixed groups of torsion-free rank one with totally projective primary components, J. Algebra 17(4) (1971), 482–488. | MR 0272891 | Zbl 0215.39902