For extending the notion of $E$-algebra, as defined in [2], we present an example of an m-admissible algebra which is not an $E$ - algebra. Then we define $E$-subcompactification and $E{\mathcal F}$-subcompactification to study the universal $E$-subcompactification and the universal $E{\mathcal F}$-subcompactification from the function algebras point of view.
@article{108003, author = {Abdolmajid Fattahi and H. R. Ebrahimi Vishki}, title = {Characterization of $E\mathcal{F}$-subcompactification}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {247-250}, zbl = {1164.22303}, mrnumber = {2260383}, language = {en}, url = {http://dml.mathdoc.fr/item/108003} }
Fattahi, Abdolmajid; Vishki, H. R. Ebrahimi. Characterization of $E\mathcal{F}$-subcompactification. Archivum Mathematicum, Tome 042 (2006) pp. 247-250. http://gdmltest.u-ga.fr/item/108003/
Analysis on Semigroups, Function spaces, Compactifications, Representations, Wiley, New York, 1989. (1989) | MR 0999922 | Zbl 0727.22001
Reductive Compactifications of Semitopological Semigroups, Internat. J. Math. Math. Sci. 51 (2003), 3277–3280. | MR 2018590 | Zbl 1028.22005
An Introduction to Semigroup Theory, Academic Press, New York, 1976. (1976) | MR 0466355 | Zbl 0355.20056
Distal compactifications of semigroups, Trans. Amer. Math. Soc. 274 (1982), 379–397. (1982) | MR 0670940 | Zbl 0007.09703
Flows and compactifications, J. London Math. Soc. 46 (1992), 349–363. (1992) | MR 1182489 | Zbl 0769.54045