On the first eigenvalue of spacelike hypersurfaces in Lorentzian space
Wu, Bing Ye
Archivum Mathematicum, Tome 042 (2006), p. 233-238 / Harvested from Czech Digital Mathematics Library

In this paper we obtain a lower bound for the first Dirichlet eigenvalue of complete spacelike hypersurfaces in Lorentzian space in terms of mean curvature and the square length of the second fundamental form. This estimate is sharp for totally umbilical hyperbolic spaces in Lorentzian space. We also get a sufficient condition for spacelike hypersurface to have zero first eigenvalue.

Publié le : 2006-01-01
Classification:  53C40,  53C50,  58J50
@article{108001,
     author = {Bing Ye Wu},
     title = {On the first eigenvalue of spacelike hypersurfaces in Lorentzian space},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {233-238},
     zbl = {1164.53373},
     mrnumber = {2260381},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108001}
}
Wu, Bing Ye. On the first eigenvalue of spacelike hypersurfaces in Lorentzian space. Archivum Mathematicum, Tome 042 (2006) pp. 233-238. http://gdmltest.u-ga.fr/item/108001/

Cheung L. F.; Leung P. F. Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space, Math. Z. 236 (2001), 525–530. | MR 1821303 | Zbl 0990.53029

Cheng S. Y.; Yau S. T. Differential equations on Riemannian manifolds and geometric applications, Comm. Pure Appl. Math. 28 (1975), 333–354. (1975) | MR 0385749

Kobayashi S.; Nomizu K. Foundations of Differential Geometry, vol II, Interscience, New York, 1969. (1969) | MR 0238225 | Zbl 0175.48504

Mckean H. P. An upper bound for the spectrum of $\Delta $ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359–366. (1970) | MR 0266100

Pacellibessa G.; Montenegro J. F. Eigenvalue estimates for submanifolds with locally bounded mean curvature, Ann. Glob. Anal. Geom. 24 (2003), 279–290. | MR 1996771

Schoen R.; Yau S. T. Lectures on differential geometry, Lecture Notes in Geom. Topo. 1 (1994). (1994) | MR 1333601 | Zbl 0830.53001