Using the fundamental notions of the quaternionic analysis we show that there are no 4-dimensional almost Kähler manifolds which are locally conformally flat with a metric of a special form.
@article{107999, author = {Wies\l aw Kr\'olikowski}, title = {On 4-dimensional locally conformally flat almost K\"ahler manifolds}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {215-223}, zbl = {1164.53383}, mrnumber = {2260379}, language = {en}, url = {http://dml.mathdoc.fr/item/107999} }
Królikowski, Wiesław. On 4-dimensional locally conformally flat almost Kähler manifolds. Archivum Mathematicum, Tome 042 (2006) pp. 215-223. http://gdmltest.u-ga.fr/item/107999/
Die Funktionentheorie der Differentialgleichungen ${\triangle }u=0$ und ${\triangle }{\triangle }u = 0$ mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307–330. | MR 1509515
Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96–100. | MR 0238238 | Zbl 0174.25002
On Fueter-Hurwitz regular mappings, Diss. Math. 353 (1996). | MR 1388662
Foundations of differential geometry, I – II, Interscience, 1963. | MR 0152974
Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. | MR 0516081 | Zbl 1100.30042