In this paper we consider a nonlinear periodic system driven by the vector ordinary $p$-Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.
@article{107998, author = {Michael E. Filippakis and Nikolaos S. Papageorgiou}, title = {A nonlinear periodic system with nonsmooth potential of indefinite sign}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {205-213}, zbl = {1164.34404}, mrnumber = {2260378}, language = {en}, url = {http://dml.mathdoc.fr/item/107998} }
Filippakis, Michael E.; Papageorgiou, Nikolaos S. A nonlinear periodic system with nonsmooth potential of indefinite sign. Archivum Mathematicum, Tome 042 (2006) pp. 205-213. http://gdmltest.u-ga.fr/item/107998/
Homoclinic orbits for a class of hemivariational inequalities, Appl. Anal. 58 (1995), 229–240. (1995) | MR 1383190 | Zbl 0829.49007
Periodic and homoclinic solutions for a class of unilateral problems, Discrete Contin. Dynam. Systems 3 (1997), 579–590. (1997) | MR 1465127 | Zbl 0948.37013
Periodic solutions for second-order differential equations involving nonconvex superpotentials, J. Global Optim. 17 (2000), 9–17. | MR 1807964 | Zbl 1055.34080
Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign, Nonlinear Anal. 29 (1997), 1353–1364. (1997) | MR 1484908 | Zbl 0894.34036
Existence and multiplicity results for homogeneous second order differential equations, J. Differential Equations 112 (1994), 239–249. (1994) | MR 1287560 | Zbl 0808.58013
A new approach to Lagrange multipliers, Math. Oper. Res. I (1976), 165–174. (1976) | MR 0414104 | Zbl 0404.90100
An introduction to Nonlinear Analysis. Theory, Kluwer/Plenum, New York (2003). | MR 2024162 | Zbl 1040.46001
An introduction to Nonlinear Analysis. Applications, Kluwer/Plenum, New York (2003). | MR 2024161 | Zbl 1054.47001
Existence and multiplicity results for periodic solutions for superquadratic systems where the potential changes sign, Nonlinear Differential Equations Appl. 2 (1995), 35–61. (1995) | MR 1322202
Solutions periodiques d’un systeme differentiel non lineaire du second order avec changement de sign, Ann. Math. Pura Appl. 156 (1990), 76–111. (1990) | MR 1080211
Periodic solutions of a second order superquadratic system with a change of sign in the potential, J. Differential Equations 93 (1991), 1–18. (1991) | MR 1122304 | Zbl 0736.34041
Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems, Czechoslovak Math. J. 54 (2004), 347–371. | MR 2059256 | Zbl 1080.34532
Periodic solutions for second order Hamiltonian systems with a change sign potential, J. Math. Anal. 292 (2004), 506–516. | MR 2047627 | Zbl 1078.34023
Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign, Nonlinear Anal. 51 (2002), 1273–1283. | MR 1926629 | Zbl 1157.37329