Some properties on the closed subsets in Banach spaces
Maaden, Abdelhakim ; Stouti, Abdelkader
Archivum Mathematicum, Tome 042 (2006), p. 167-174 / Harvested from Czech Digital Mathematics Library

It is shown that under natural assumptions, there exists a linear functional does not have supremum on a closed bounded subset. That is the James Theorem for non-convex bodies. Also, a non-linear version of the Bishop-Phelps Theorem and a geometrical version of the formula of the subdifferential of the sum of two functions are obtained.

Publié le : 2006-01-01
Classification:  46B20,  49J52
@article{107993,
     author = {Abdelhakim Maaden and Abdelkader Stouti},
     title = {Some properties on the closed subsets in Banach spaces},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {167-174},
     zbl = {1164.46307},
     mrnumber = {2240354},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107993}
}
Maaden, Abdelhakim; Stouti, Abdelkader. Some properties on the closed subsets in Banach spaces. Archivum Mathematicum, Tome 042 (2006) pp. 167-174. http://gdmltest.u-ga.fr/item/107993/

Azagra D.; Deville R. James’ theorem fails for starlike bodies, J. Funct. Anal. 180 (2) (2001), 328–346. | MR 1814992 | Zbl 0983.46016

Bishop E.; Phelps R. R. The support cones in Banach spaces and their applications, Adv. Math. 13 (1974), 1–19. (1974) | MR 0338741

Deville R.; El Haddad E. The subdifferential of the sum of two functions in Banach spaces, I. First order case, J. Convex Anal. 3 (2) (1996), 295–308. (1996) | MR 1448058

Deville R.; Godefroy G.; Zizler V. A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993), 197–212. (1993) | MR 1200641 | Zbl 0774.49021

Deville R.; Maaden A. Smooth variational principles in Radon-Nikodým spaces, Bull. Austral. Math. Soc. 60 (1999), 109–118. (1999) | MR 1702818 | Zbl 0956.49003

Diestel J. Geometry of Banach spaces - Selected topics, Lecture Notes in Math., Berlin – Heidelberg – New York 485 (1975). (1975) | MR 0461094 | Zbl 0307.46009

Fabian M.; Mordukhovich B. S. Separable reduction and extremal principles in variational analysis, Nonlinear Anal. 49 (2) (2002), 265–292. | MR 1885121 | Zbl 1061.49015

Haydon R. A counterexample in several question about scattered compact spaces, Bull. London Math. Soc. 22 (1990), 261–268. (1990) | MR 1041141

Ioffe A. D. Proximal analysis and approximate subdifferentials, J. London Math. Soc. (2) 41 (1990), 175–192. (1990) | MR 1063554 | Zbl 0725.46045

James R. C. Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129–140. (1964) | MR 0165344 | Zbl 0129.07901

Leduc M. Densité de certaines familles d’hyperplans tangents, C. R. Acad. Sci. Paris, Sér. A 270 (1970), 326–328. (1970) | MR 0276733 | Zbl 0193.10801

Mordukhovich B. S. Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Sov. Math. Dokl. 22 (1980), 526–530. (1980) | Zbl 0491.49011

Mordukhovich B. S.; Shao Y. H. Extremal characterizations of Asplund spaces, Proc. Amer. Math. Soc. 124 (1) (1996), 197–205. (1996) | MR 1291788 | Zbl 0849.46010

Mordukhovich B. S.; Shao Y. H. Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348 (4) (1996), 1235–1280. (1996) | MR 1333396 | Zbl 0881.49009

Phelps R. R. Convex functions, Monotone Operators and Differentiability, Lecture Notes in Math., Berlin – Heidelberg – New York – London – Paris – Tokyo 1364 (1991). (1991)