Slant Hankel operators
Arora, Subhash Chander ; Batra, Ruchika ; Singh, M. P.
Archivum Mathematicum, Tome 042 (2006), p. 125-133 / Harvested from Czech Digital Mathematics Library

In this paper the notion of slant Hankel operator $K_\varphi$, with symbol $\varphi$ in $L^\infty$, on the space $L^2({\Bbb T})$, ${\Bbb T}$ being the unit circle, is introduced. The matrix of the slant Hankel operator with respect to the usual basis $\{z^i : i \in {\Bbb Z} \}$ of the space $L^2$ is given by $\langle\alpha_{ij}\rangle = \langle a_{-2i-j}\rangle$, where $\sum\limits_{i=-\infty}^{\infty}a_i z^i$ is the Fourier expansion of $\varphi$. Some algebraic properties such as the norm, compactness of the operator $K_\varphi$ are discussed. Along with the algebraic properties some spectral properties of such operators are discussed. Precisely, it is proved that for an invertible symbol $\varphi$, the spectrum of $K_\varphi$ contains a closed disc.

Publié le : 2006-01-01
Classification:  47A10,  47B35
@article{107988,
     author = {Subhash Chander Arora and Ruchika Batra and M. P. Singh},
     title = {Slant Hankel operators},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {125-133},
     zbl = {1164.47325},
     mrnumber = {2240189},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107988}
}
Arora, Subhash Chander; Batra, Ruchika; Singh, M. P. Slant Hankel operators. Archivum Mathematicum, Tome 042 (2006) pp. 125-133. http://gdmltest.u-ga.fr/item/107988/

Arora S. C.; Ruchika Batra On Slant Hankel Operators, to appear in Bull. Calcutta Math. Soc. | MR 2392281

Brown A.; Halmos P. R. Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89–102. (1964) | MR 0160136

Halmos P. R. Hilbert Space Problem Book, Springer Verlag, New York, Heidelberg-Berlin, 1979. (1979)

Ho M. C. Properties of Slant Toeplitz operators, Indiana Univ. Math. J. 45 (1996), 843–862. (1996) | MR 1422109 | Zbl 0880.47016