We classify all natural affinors on vertical fiber product preserving gauge bundle functors $F$ on vector bundles. We explain this result for some more known such $F$. We present some applications. We remark a similar classification of all natural affinors on the gauge bundle functor $F^*$ dual to $F$ as above. We study also a similar problem for some (not all) not vertical fiber product preserving gauge bundle functors on vector bundles.
@article{107982, author = {Jan Kurek and W\l odzimierz M. Mikulski}, title = {The natural affinors on some fiber product preserving gauge bundle functors of vector bundles}, journal = {Archivum Mathematicum}, volume = {042}, year = {2006}, pages = {59-67}, zbl = {1164.58302}, mrnumber = {2227113}, language = {en}, url = {http://dml.mathdoc.fr/item/107982} }
Kurek, Jan; Mikulski, Włodzimierz M. The natural affinors on some fiber product preserving gauge bundle functors of vector bundles. Archivum Mathematicum, Tome 042 (2006) pp. 59-67. http://gdmltest.u-ga.fr/item/107982/
Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205–209. | MR 1189217
Natural affinors on the extended $r$-th order tangent bundles, Rend. Circ. Mat. Palermo (2) Suppl. 30 (1993), 95–100. | MR 1246623
Natural operations in differential geometry, Springer-Verlag, Berlin 1993. | MR 1202431
Contact elements on fibered manifolds, Czechoslovak Math. J. 53(128) (2003), 1017–1030. | MR 2018847
Torsions of connections on some natural bundles, Differential Geom. Appl. 2 (1992), 1–16. | MR 1244453
Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175–180. | MR 1222284
Some natural operators in linear vector fields, Ann. Univ. Mariae Curie-Skłodowska Sect. A 58 (2004), 87–95. | MR 2199593
On the fiber product preserving gauge bundle functors on vector bundles, Ann. Polon. Math. 82.3 (2003), 251–264. | MR 2040810 | Zbl 1126.58300
Natural affinors on $r$-jet prolongation of the tangent bundles, Arch. Math. (Brno) 34(2) (1998), 321–328. | MR 1645340
Natural affinors on $(J^rT^*)^*$, Arch. Math. (Brno) 36 (2000), 261–267. | MR 1811170 | Zbl 1090.58501
The natural affinors on $\otimes ^kT^{(r)}$, Note Mat. 19(2) (1999), 269–274. | MR 1816880
The natural affinors on generalized higher order tangent bundles, Rend. Mat. Appl. (7) 21 (2001), 339–349. | MR 1884952 | Zbl 1048.58004
Natural affinors on $(J^{r,s,q}(\cdot ,\mathbf{R}^{1,1})_0)^*$, Comment. Math. Univ. Carolin. 42(4) (2001), 655–663. | MR 1883375 | Zbl 1050.58004
The natural affinors on $(J^rT^{*,a})^*$, Acta Univ. Palack. Olomuc. Fac. Rerum Natur., Math. 40 (2001), 179–184. | MR 1904693 | Zbl 1050.58004
The natural affinors on the $r$-jet prolongations of a vector bundle, Demonstratio Math. XXXVII (3) (2004), 709–717. | MR 2093550 | Zbl 1064.58003
Natural operators transforming projectable vector fields to product preserving bundles, Rend. Circ. Mat. Palermo (2) Suppl. 59 (1999), 181–187. | MR 1692269