On generalized “ham sandwich” theorems
Golasiński, Marek
Archivum Mathematicum, Tome 042 (2006), p. 25-30 / Harvested from Czech Digital Mathematics Library

In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied.

Publié le : 2006-01-01
Classification:  12D10,  14P05,  58C07
@article{107978,
     author = {Marek Golasi\'nski},
     title = {On generalized ``ham sandwich'' theorems},
     journal = {Archivum Mathematicum},
     volume = {042},
     year = {2006},
     pages = {25-30},
     zbl = {1164.58312},
     mrnumber = {2227109},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107978}
}
Golasiński, Marek. On generalized “ham sandwich” theorems. Archivum Mathematicum, Tome 042 (2006) pp. 25-30. http://gdmltest.u-ga.fr/item/107978/

Arens R. On sandwich slicing, Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980. (1978) | MR 0588764

Borsuk K. Drei Sätze über die $n$-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177–190. (1933) | Zbl 0006.42403

Dugundij J.; Granas A. Fixed point theory, Vol.I, Monografie Matematyczne 61, PWN, Warsaw 1982. (1982)

Gray B. Homotopy theory, New York, San Francisco, London 1975. (1975) | MR 0402714 | Zbl 0322.55001

Halmos P. R. Measure theory, Toronto, New York, London 1950. (1950) | MR 0033869 | Zbl 0040.16802

Hill T. Hyperplane medians for random vectors, Amer. Math. Monthly 95 (5) (1988), 437–441. (1988) | MR 0937533 | Zbl 0643.60011

Hobby C. R.; Rice J. R. A moment problem in $L_1$-approximation, Proc. Amer. Math. Soc. 16 (1965), 665–670. (1965) | MR 0178292

Pinkus A. A simple proof of the Hobby-Rice theorem, Proc. Amer. Math. Soc. 60 (1976), 82–84. (1976) | MR 0425470

Peters J. V. The ham sandwich theorem for some related results, Rocky Mountain J. Math. 11 (3) (1981), 473–482. (1981) | MR 0722580

Steinhaus H. Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles, Fund. Math. 33 (1945), 245–263. (1945) | MR 0017514 | Zbl 0061.38404

Steinhaus H. Kalejdoskop matematyczny, PWN, Warszawa (1956). (1956)

Steinlein H. Spheres and symmetry, Borsuk’s antipodal theorem, Topol. Methods Nonlinear Anal. 1 (1993), 15–33. (1993) | MR 1215255 | Zbl 0795.55004

Stone A.; Tukey J. W. Generalized “sandwich” theorems, Duke Math. J. 9 (1942), 356–359. (1942) | MR 0007036 | Zbl 0061.38405