The $D$-stability problem for $4\times 4$ real matrices
Impram, Serkan T. ; Johnson, Russell ; Pavani, Raffaella
Archivum Mathematicum, Tome 041 (2005), p. 439-450 / Harvested from Czech Digital Mathematics Library

We give detailed discussion of a procedure for determining the robust $D$-stability of a $4\times 4$ real matrix. The procedure begins from the Hurwitz stability criterion. The procedure is applied to two numerical examples.

Publié le : 2005-01-01
Classification:  15A04,  15A18,  34D15,  65F15,  93D09
@article{107972,
     author = {Serkan T. Impram and Russell Johnson and Raffaella Pavani},
     title = {The $D$-stability problem for $4\times 4$ real matrices},
     journal = {Archivum Mathematicum},
     volume = {041},
     year = {2005},
     pages = {439-450},
     zbl = {1122.15003},
     mrnumber = {2195496},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107972}
}
Impram, Serkan T.; Johnson, Russell; Pavani, Raffaella. The $D$-stability problem for $4\times 4$ real matrices. Archivum Mathematicum, Tome 041 (2005) pp. 439-450. http://gdmltest.u-ga.fr/item/107972/

Abed E. H. Decomposition and stability of multiparameter singular perturbation problems, IEEE Trans. Automat. Control, AC-31 (1986), 925–934. (1986) | Zbl 0601.93004

Barker G. P.; Berman A.; Plemmons R. J. Positive diagonal solutions to the Lyapunov equations, Linear and Multilinear Algebra 5 (1978), 249–256. (1978) | MR 0469939 | Zbl 0385.15006

Berman A.; Shasha D. Inertia-preserving matrices, SIAM J. Matrix Anal. Appl. 12-2 (1991), 209–212. (1991) | MR 1089156 | Zbl 0733.15004

Cain B. Real $3\times 3$ $D$-stable matrices, J. Res. of the National Bureau of Standards, Sec. B 80 (1976), 75–77. (1976) | MR 0419478

Cain B. Inside the $D$-stable matrices, Linear Algebra Appl. 56 (1984), 237–243. (1984) | MR 0724564 | Zbl 0525.15008

Cross G. W. Three types of matrix stability, Linear Algebra Appl. 20 (1978), 253–263. (1978) | MR 0480586 | Zbl 0376.15007

Chen J.; Fan M. K. H.; Yu C. On $D$-stability and structured singular values, Systems Control Lett. 24 (1995), 19–24. (1995) | MR 1307123 | Zbl 0877.93079

Carlson D.; Datta B. N.; Johnson C. R. A semi-definite Lyapunov theorem and the characterization of tridiagonal $D$-stable matrices, SIAM J. Algebraic Discrete Methods 3 (1982), 293–304. (1982) | MR 0666854 | Zbl 0541.15008

Gantmacher F. R. The theory of matrices II, Chelsea Publishing Company, 1959. (1959) | MR 0107649

Hartfiel D. J. Concerning the interior of $D$-stable matrices, Linear Algebra Appl. 30 (1980), 201–207. (1980) | MR 0568792

Hershkowitz D. Recent direction in matrix stability, Linear Algebra Appl. 171 (1992), 161–186. (1992) | MR 1165452

Horn R. A.; Johnson C. R. Topics in matrix analysis, Cambridge University Press, 1991. (1991) | MR 1091716 | Zbl 0729.15001

Johnson C. R. Second, third, and fourth order $D$-stability, J. Res. of the National Bureau of Standards, Sec. B 78 (1974), 11–13. (1974) | MR 0340287 | Zbl 0283.15005

Johnson R.; Tesi A. On the $D$-stability problem for real matrices, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 2, No. 2 (1999), 299–314. (1999) | MR 1706600 | Zbl 0936.15014

Kanovei G. V.; Logofet D. O. $D$-stability of $4\times 4$ matrices, J. Comput. Math. Math. Phys. 38 (1998), 1369–1374. (1998) | MR 1669150

Seidenberg A. A new decision procedure for elementary algebra, Ann. Math. (2) 60 (1954), 365–374. (1954) | MR 0063994