Discrete singular functionals
Mařík, Robert
Archivum Mathematicum, Tome 041 (2005), p. 339-347 / Harvested from Czech Digital Mathematics Library

In the paper the discrete version of the Morse’s singularity condition is established. This condition ensures that the discrete functional over the unbounded interval is positive semidefinite on the class of the admissible functions. Two types of admissibility are considered.

Publié le : 2005-01-01
Classification:  39A12,  49J45,  49N10
@article{107963,
     author = {Robert Ma\v r\'\i k},
     title = {Discrete singular functionals},
     journal = {Archivum Mathematicum},
     volume = {041},
     year = {2005},
     pages = {339-347},
     zbl = {1122.39303},
     mrnumber = {2188388},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107963}
}
Mařík, Robert. Discrete singular functionals. Archivum Mathematicum, Tome 041 (2005) pp. 339-347. http://gdmltest.u-ga.fr/item/107963/

Došlá Z.; Došlý O. Singular quadratic functionals of one dependent variable, Comment. Math. Univ. Carolinae 36 (1995), 219–237. (1995) | MR 1357523 | Zbl 0838.34036

Hartman P. Ordinary differential equations, J. Wiley & Sons, New York, (1964). (1964) | MR 0171038 | Zbl 0125.32102

Kelley W. G.; Peterson A. C. Difference equations - An introduction with applications, Academic Press (1991). (1991) | MR 1142573 | Zbl 0733.39001

Leighton W. Principal quadratic functionals, Trans. Amer. Math. Soc. 67 (1949), 253–274. (1949) | MR 0034535 | Zbl 0041.22404

Leighton W.; Martin A. D. Quadratic functionals with a singular end point, Trans. Amer. Math. Soc. 78 (1955), 98–128. (1955) | MR 0066570 | Zbl 0064.35401

Leighton W.; Morse M. Singular quadratic functionals, Trans. Amer. Math. Soc. 40 (1936), 252-286. (1936) | MR 1501873 | Zbl 0015.02701

Mařík R. Nonnegativity of functionals corresponding to the second order half-linear differential equation, Arch. Math. (Brno) 35 (1999), 155–164. (1999) | MR 1711728

Mařík R. Comparison theorems for half-linear second order difference equations, Arch. Math. (Brno) 36 (2000), 513–518. | MR 1822821 | Zbl 1090.39500

Řehák P. Oscillatory properties of second order half–linear difference equations, Czech. Math. J. 51, No. 2 (2001), 303–321. | MR 1844312