In the paper the discrete version of the Morse’s singularity condition is established. This condition ensures that the discrete functional over the unbounded interval is positive semidefinite on the class of the admissible functions. Two types of admissibility are considered.
@article{107963, author = {Robert Ma\v r\'\i k}, title = {Discrete singular functionals}, journal = {Archivum Mathematicum}, volume = {041}, year = {2005}, pages = {339-347}, zbl = {1122.39303}, mrnumber = {2188388}, language = {en}, url = {http://dml.mathdoc.fr/item/107963} }
Mařík, Robert. Discrete singular functionals. Archivum Mathematicum, Tome 041 (2005) pp. 339-347. http://gdmltest.u-ga.fr/item/107963/
Singular quadratic functionals of one dependent variable, Comment. Math. Univ. Carolinae 36 (1995), 219–237. (1995) | MR 1357523 | Zbl 0838.34036
Ordinary differential equations, J. Wiley & Sons, New York, (1964). (1964) | MR 0171038 | Zbl 0125.32102
Difference equations - An introduction with applications, Academic Press (1991). (1991) | MR 1142573 | Zbl 0733.39001
Principal quadratic functionals, Trans. Amer. Math. Soc. 67 (1949), 253–274. (1949) | MR 0034535 | Zbl 0041.22404
Quadratic functionals with a singular end point, Trans. Amer. Math. Soc. 78 (1955), 98–128. (1955) | MR 0066570 | Zbl 0064.35401
Singular quadratic functionals, Trans. Amer. Math. Soc. 40 (1936), 252-286. (1936) | MR 1501873 | Zbl 0015.02701
Nonnegativity of functionals corresponding to the second order half-linear differential equation, Arch. Math. (Brno) 35 (1999), 155–164. (1999) | MR 1711728
Comparison theorems for half-linear second order difference equations, Arch. Math. (Brno) 36 (2000), 513–518. | MR 1822821 | Zbl 1090.39500
Oscillatory properties of second order half–linear difference equations, Czech. Math. J. 51, No. 2 (2001), 303–321. | MR 1844312