The aim of this paper is to obtain monotonic solutions of an integral equation of Urysohn-Stieltjes type in $C[0,1]$. Existence will be established with the aid of the measure of noncompactness.
@article{107962, author = {J. Caballero and Donal O'Regan and K. B. Sadarangani}, title = {On monotonic solutions of some integral equations}, journal = {Archivum Mathematicum}, volume = {041}, year = {2005}, pages = {325-338}, zbl = {1122.45008}, mrnumber = {2188387}, language = {en}, url = {http://dml.mathdoc.fr/item/107962} }
Caballero, J.; O'Regan, Donal; Sadarangani, K. B. On monotonic solutions of some integral equations. Archivum Mathematicum, Tome 041 (2005) pp. 325-338. http://gdmltest.u-ga.fr/item/107962/
On a class of quadratic integral equations with perturbations, Funct. Approx. Comment. Math. 20 (1992), 51–63. (1992) | MR 1201716
Measures of noncompactness in Banach Spaces, Marcel Dekker, New York and Basel 1980. (1980) | MR 0591679 | Zbl 0441.47056
Measures of noncompactness related to monotonicity, Ann. Soc. Math. Pol., Commentat. Math. 41 (2001), 13–23. | MR 1876707 | Zbl 0999.47041
On a class of Urysohn-Stieltjes quadratic integral equations and their applications, J. Comput. Appl. Math. 113 (2000), 35–50. | MR 1735811 | Zbl 0943.45002
On the $H$-function of Chandrasekhar, Quart. J. Math. Oxford Ser. (2) 8 (1957), 133–140. (1957) | MR 0100208
The transfer of radiation in stellar atmospheres, Bull. Amer. Math. Soc. 53 (1947), 641–711. (1947) | MR 0022303
Radiative Transfer, Oxford Univ. Press London, 1950. (1950) | MR 0042603 | Zbl 0037.43201
On an integral equation of Chandrasekhar, Quart. J. Math. Oxford Ser. (2) 18 (1947), 244–252. (1947) | MR 0023437 | Zbl 0029.26901
Punti uniti in transformazioni a condominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84–92. (1955) | MR 0070164
Linear Operators I, Int. Publ. Leyden, 1963. (1963)
Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equations 4 (1982), 221–237. (1982) | MR 0661170
Sur les espaces completes, Fund. Math. 15 (1930), 301–309. (1930)
Theory of functions of a real variable, Ungar, New York, 1960. (1960)