We derive both local and global generalized Bianchi identities for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the a priori introduction of a connection. The proof is based on a global decomposition of the variational Lie derivative of the generalized Euler-Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that within a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism is not intrinsically arbitrary. As a consequence the existence of canonical global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.
@article{107960, author = {Marcella Palese and Ekkehart Winterroth}, title = {Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles}, journal = {Archivum Mathematicum}, volume = {041}, year = {2005}, pages = {289-310}, zbl = {1112.58005}, mrnumber = {2188385}, language = {en}, url = {http://dml.mathdoc.fr/item/107960} }
Palese, Marcella; Winterroth, Ekkehart. Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles. Archivum Mathematicum, Tome 041 (2005) pp. 289-310. http://gdmltest.u-ga.fr/item/107960/
Decomposition of higher order tangent fields and calculus of variations, Proc. Diff. Geom. Appl. (Brno, 1998), 451–460, Masaryk Univ., Brno, 1999. (1998) | MR 1708934
$D$-modules, contact valued calculus and Poincaré-Cartan form, Czechoslovak Math. J. 49 (124) (3) (1999), 585–606. (1999) | MR 1708350 | Zbl 1011.58011
Constraints in covariant field theories, Phys. Rev. 83 (5) (1951), 1018–1025. (1951) | MR 0044382 | Zbl 0045.45505
Nöther conserved quantities and entropy in general relativity, In: Recent Developments in General Relativity, Genoa 2000; R. Cianci et al. eds., Springer Italia, Milano (2001), 75–92. | MR 1852664 | Zbl 1202.83039
Non-linear field theories, Phys. Rev. 75 (4) (1949), 680–685. (1949) | MR 0028128 | Zbl 0039.23004
Conservation laws in general relativity as the generators of coordinate transformations, Phys. Rev. 112 (1) (1958), 287–289. (1958) | MR 0099236
On the relation between the Einstein and the Komar expressions for the energy of the gravitational field, Ann. Inst. H. Poincaré 42 (3) (1985), 267–282. (1985) | MR 0797276 | Zbl 0645.53063
Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 247 (1981), 1–48. (1981) | MR 0632164 | Zbl 0493.53052
Gauge natural field theories and applications to conservation laws, Proc. VIII Conf. Differential Geom. Appl., O. Kowalski et al. eds.; Silesian University at Opava, Opava (Czech Republic) 2001, 401–413. | MR 1978794 | Zbl 1026.70027
Conservation laws and variational sequences in gauge-natural theories, Math. Proc. Cambridge Philos. Soc. 130 (2001), 555–569. | MR 1816809 | Zbl 0988.58006
The Lagrangian approach to conserved quantities in general relativity, In: Mechanics, Analysis and Geometry: 200 Years after Lagrange; M. Francaviglia ed.; Elsevier Science Publishers B. V. (Amsterdam, 1991), 451–488. (1991) | MR 1098527 | Zbl 0717.53060
Conserved quantities from the equations of motion (with applications to natural and gauge natural theories of gravitation), Classical Quantum Gravity 20 (2003), 4043–4066. | MR 2017333
Second order variations in variational sequences, Steps in Differential Geometry (Debrecen, 2000) Inst. Math. Inform. Debrecen, Hungary (2001), 119–130. | MR 1859293 | Zbl 0977.58019
Generalized Jacobi morphisms in variational sequences, In: Proc. XXI Winter School Geometry and Physics, Srní 2001, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 195–208. | MR 1972435 | Zbl 1028.58022
Symmetries in finite order variational sequences, Czechoslovak Math. J. 52 (127) (2002), 197–213. | MR 1885465 | Zbl 1006.58014
Superpotentials in variational sequences, Proc. VII Conf. Differential Geom. Appl., Satellite Conf. of ICM in Berlin (Brno 1998); I. Kolář et al. eds.; Masaryk University in Brno (Czech Republic) 1999, 469–480. (1998) | MR 1708936
The Hessian and Jacobi morphisms for higher order calculus of variations, Differential Geom. Appl. 22 (1) (2005), 105–120. | MR 2106379 | Zbl 1065.58010
Reductive $G$-structures and Lie derivatives, J. Geom. Phys. 47 (1) (2003), 66–86. | MR 1985484 | Zbl 1035.53035
Conservation laws in general relativity, Phys. Rev. (2) 111 (1958), 315–320. (1958) | MR 0099235 | Zbl 0089.20903
The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267. (1973) | MR 0341531 | Zbl 0243.49011
On the higher order Poincaré-Cartan forms, Czechoslovak Math. J. 33 (108) (1983), 467–475. (1983) | Zbl 0545.58004
Natural and gauge-natural operators on the space of linear connections on a vector bundle, Proc. Differential Geom. Appl. (Brno, 1989); J Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 58–68. (1989) | MR 1062006
Reduction theorems for general linear connections, Differential Geom. Appl. 20 (2004), no. 2, 177–196. (196.) | MR 2038554
Infinitesimal natural and gauge-natural lifts, Differential Geom. Appl. 2 (2) (1992), 99–121. (1992) | MR 1245551 | Zbl 0780.53023
Currents and superpotentials in classical gauge theories, II, Global Aspects and the example of affine gravity, Classical Quantum Gravity 17 (22) (2000), 4733–4743. | MR 1797968 | Zbl 0988.83026
A note on Komar’s anomalous factor, Classical Quantum Gravity 2 (3) (1985), 423–425. (1985) | MR 0792031
On some operations with connections, Math. Nachr. 69 (1975), 297–306. (1975) | MR 0391157
Prolongations of generalized connections, Coll. Math. Soc. János Bolyai, (Differential Geometry, Budapest, 1979) 31 (1979), 317–325. (1979) | MR 0706928
A geometrical version of the higher order Hamilton formalism in fibred manifolds, J. Geom. Phys. 1 (2) (1984), 127–137. (1984) | MR 0794983
Some geometric aspects of the higher order variational calculus, Geom. Meth. in Phys., Proc. Diff. Geom. and its Appl., (Nové Město na Moravě, 1983); D. Krupka ed.; J. E. Purkyně University (Brno, 1984), 155–166. (1983) | MR 0793206
Natural operators related with the variational calculus, Proc. Differential Geom. Appl. (Opava, 1992), 461–472, Math. Publ. 1 Silesian Univ. Opava, Opava, 1993. (1992) | MR 1255562
Natural operations in differential geometry, Springer-Verlag, N.Y., 1993. (1993) | MR 1202431 | Zbl 0782.53013
Connections in first principal prolongations, In: Proc. XVI Winter School Geometry and Physics, Srní 1995, Rend. Circ. Mat. Palermo (2), Suppl. 43 (1995), 163–171. (1995) | MR 1463518
On the Helmholtz operator for Euler morphisms, Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 277–290. | MR 2006065 | Zbl 1048.58012
Covariant conservation laws in general relativity, Phys. Rev. 113 (3) (1959), 934–936. (1959) | MR 0102403 | Zbl 0086.22103
Variational sequences on finite order jet spaces, Proc. Diff. Geom. and its Appl. (Brno, 1989), J. Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 236–254. (1989) | MR 1062026
Topics in the calculus of variations: finite order variational sequences, O. Kowalski and D. Krupka eds., Proc. Differential Geom. and its Appl. (Opava, 1992), Math. Publ. 1, Silesian Univ. Opava, Opava, 1993, 473–495. (1992) | MR 1255563
Fibered spaces, jet spaces and connections for field theories, In: Proc. Int. Meet. Geom. Phys.; M. Modugno ed.; Pitagora Editrice (Bologna, 1983), 135–165. (1983) | MR 0760841 | Zbl 0539.53026
Invariante variationsprobleme, Nachr. Ges. Wiss. Gött., Math. Phys. Kl. II (1918), 235–257. (1918)
Geometric foundations of the calculus of variations. Variational sequences, symmetries and Jacobi morphisms, Ph.D. Thesis, University of Torino (2000).
, In preparation. | Zbl 1233.58002
The geometry of jet bundles, Cambridge Univ. Press (Cambridge, 1989). (1989) | MR 0989588 | Zbl 0665.58002
Conservation laws in general relativity, In Gravitation: An introduction to current research, pp. 169–198, Wiley, New York 1962. (198,) | MR 0143627
Noether equations and conservation laws, Comm. Math. Phys. 6 (1967), 248–261. (1967) | MR 0220470 | Zbl 0172.27803
A metaphysical remark on variational principles, Acta Phys. Polon. B XX (1996), 1–9. (1996) | MR 1388335 | Zbl 0966.58503
Finite order Lagrangian bicomplexes, Math. Proc. Camb. Phil. Soc. 125 (1) (1999), 321–333. (1999) | MR 1643802