An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications
Staněk, Svatoslav
Archivum Mathematicum, Tome 041 (2005), p. 229-241 / Harvested from Czech Digital Mathematics Library

The linear differential equation $(q):y''=q(t)y$ with the uniformly almost-periodic function $q$ is considered. Necessary and sufficient conditions which guarantee that all bounded (on $\mathbb{R}$) solutions of $(q)$ are uniformly almost-periodic functions are presented. The conditions are stated by a phase of $(q)$. Next, a class of equations of the type $(q)$ whose all non-trivial solutions are bounded and not uniformly almost-periodic is given. Finally, uniformly almost-periodic solutions of the non-homogeneous differential equations $y''=q(t)y+f(t)$ are considered. The results are applied to the Appell and Kummer differential equations.

Publié le : 2005-01-01
Classification:  34C27
@article{107953,
     author = {Stan\v ek, Svatoslav},
     title = {An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications},
     journal = {Archivum Mathematicum},
     volume = {041},
     year = {2005},
     pages = {229-241},
     zbl = {1117.34043},
     mrnumber = {2164672},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107953}
}
Staněk, Svatoslav. An almost-periodicity criterion for solutions of the oscillatory differential equation $y''=q(t)y$ and its applications. Archivum Mathematicum, Tome 041 (2005) pp. 229-241. http://gdmltest.u-ga.fr/item/107953/

Appell P. Sur les transformations des équations différentielles linéaires, C. R. Acad. Sci. Paris 91 (1880), 211–214.

Beckenbach E. F.; Bellman R. Inequalities, Springer 1961. (1961) | MR 0158038 | Zbl 0186.09606

Borůvka O. Linear differential transformations of the second order, The English Univ. Press, London 1971. (1971) | MR 0463539

Borůvka O. Sur les blocs des équations différentielles $y^{\prime \prime }=q(t)y$ aux coefficients périodiques, Rend. Mat. 8 (1975), 519–532. (1975) | MR 0379945 | Zbl 0326.34007

Borůvka O. The theory of global properties of second-order ordinary differential equations, Differentsial’nye Uravneniya, 12 (1976), 1347–1383. (in Russian). (1976) | MR 0440123

Corduneanu C. Almost Periodic Functions, Wiley, New York 1968. (1968) | MR 0481915 | Zbl 0175.09101

Fink M. A. Almost periodic differential equations, Springer, New York – Berlin 1974. (1974) | MR 0460799 | Zbl 0325.34039

Guter R. S.; Kudryavtsev L. D.; Levitan B. M. Elements of the theory of functions, Pergamon Press, Oxford 1966. (1966) | MR 0197232 | Zbl 0133.30401

Greguš M. Linear differential equations of the third order, North Holland, Reider Co., Dordrecht-Boston-Lancaster 1986. (1986)

Haraux A. A simple almost-periodicity criterion and applications, J. Differential Equations 66 (1987), 51–61. (1987) | MR 0871570 | Zbl 0608.34049

Hartman P. Ordinary differential equations, J. Wiley, New York 1964. (1964) | MR 0171038 | Zbl 0125.32102

Hu Z. S.; Mingarelli A. B. On a question in the theory of almost periodic differential equations, Proc. Amer. Math. Soc. 127 (1999), 2665–2670. (1999) | MR 1485481 | Zbl 0924.34039

Levitan B. M. Almost-periodic functions, G.I.T.-T.L., Moscow 1953 (in Russian). (1953) | MR 0060629 | Zbl 1222.42002

Lillo J. C. Approximate similarity and almost periodic matrices, Proc. Amer. Math. Soc. 12 (1961), 400-407. (1961) | MR 0125127 | Zbl 0099.29001

Markus L.; Moore R. A. Oscillation and disconjugacy for linear differential equations with almost periodic coefficients, Acta mathematica 96 (1956), 99-123. (1956) | MR 0080813 | Zbl 0071.08302

Mingarelli A. B.; Pu P. Q.; Zheng L. A Counter-example in the theory of almost periodic differential equations, Rocky Mountain J. Math. 25 (1995), 437–440. (1995) | MR 1340018 | Zbl 0833.34041

Rudin W. Principles of Mathematical Analysis, McGraw-Hill, New York 1964. (1964) | MR 0166310 | Zbl 0148.02903

Staněk S. On some properties of solutions of the disconjugate equation $y^{\prime \prime }=q(t)y$ with an almost periodic coefficient $q$, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 25 (1986), 31–56. (1986) | MR 0918368 | Zbl 0644.34039