For a generalized pendulum equation we estimate the number of periodic solutions from below using lower and upper solutions and from above using a complex equation and Jensen’s inequality.
@article{107951, author = {Zbyn\v ek Kub\'a\v cek and Boris Rudolf}, title = {On the number of periodic solutions of a generalized pendulum equation}, journal = {Archivum Mathematicum}, volume = {041}, year = {2005}, pages = {197-208}, zbl = {1117.34041}, mrnumber = {2164670}, language = {en}, url = {http://dml.mathdoc.fr/item/107951} }
Kubáček, Zbyněk; Rudolf, Boris. On the number of periodic solutions of a generalized pendulum equation. Archivum Mathematicum, Tome 041 (2005) pp. 197-208. http://gdmltest.u-ga.fr/item/107951/
Counting real zeros of analytic functions satisfying linear ordinary differential equations, J. Differential Equations 126 (1996), 87–105. | MR 1382058
Kratkij kurs teorii analitičeskich funkcij, Nauka Moskva 1978. (russian) | MR 0542281
Points fixes, points critiques et probl‘emes aux limites, Sémin. Math. Sup. no. 92, Presses Univ. Montréal, Montréal 1985. | MR 0789982
Seventy-five years of global analysis around the forced pendulum equation, Proceedings of the Conference Equadiff 9 (Brno, 1997), Masaryk Univ. 1998, pp. 861–876.
Counting periodic solutions of the forced pendulum equation, Nonlinear Analysis 42 (2000), 1055–1062. (2000) | MR 1780454 | Zbl 0967.34037
Upper and lower solutions and topological degree, JMAA 234 (1999), 311–327. (1999) | MR 1694813
A multiplicity result for a generalized pendulum equation, Proceedings of the 4$^{\text{th}}$ Workshop on Functional Analysis and its Applications, Nemecká 2003, 53–57.