In this paper, we prove that unit ideal-stable range condition is right and left symmetric.
@article{107949, author = {Huanyin Chen and Miaosen Chen}, title = {The symmetry of unit ideal stable range conditions}, journal = {Archivum Mathematicum}, volume = {041}, year = {2005}, pages = {181-186}, zbl = {1114.16301}, mrnumber = {2164668}, language = {en}, url = {http://dml.mathdoc.fr/item/107949} }
Chen, Huanyin; Chen, Miaosen. The symmetry of unit ideal stable range conditions. Archivum Mathematicum, Tome 041 (2005) pp. 181-186. http://gdmltest.u-ga.fr/item/107949/
Extensions of unit $1$-stable range, Comm. Algebra 32 (2004), 3071–3085. | MR 2102167 | Zbl 1068.16009
$K_1$ of von Neumann regular rings, J. Pure Appl. Algebra 33 (1984), 295–312. (1984) | MR 0761635
$K_2(R,I)$ of unit $1$-stable ring, Chin. Sci. Bull. 35 (1990), 1590–1595. (1990) | MR 1206598
Rings with stable range conditions, Comm. Algebra 26 (1998), 3653–3668. (1998) | MR 1647098 | Zbl 0914.16002
Exchange rings with artinian primitive factors, Algebra Represent. Theory 2 (1999), 201–207. (1999) | MR 1702275 | Zbl 0960.16009
Exchange rings satisfying unit $1$-stable range, Kyushu J. Math. 54 (2000), 1–6. | MR 1762788 | Zbl 0999.16004
Exchange rings satisfying ideal-stable range one, Sci. China Ser. A 44 (2001), 580–586. | MR 1843753
Morita contexts with generalized stable conditions, Comm. Algebra 30 (2002), 2699–2713. | MR 1908234 | Zbl 1008.16008
Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), 105–109. (1995) | MR 1317002 | Zbl 0837.16009
On unit $1$-stable range, J. Appl. Algebra $\&$ Discrete Structures 1 (2003), 189–196. (196.) | MR 2013280