Weak discrete maximum principles
Al-Mahameed, Mohammad Mujalli
Archivum Mathematicum, Tome 041 (2005), p. 167-173 / Harvested from Czech Digital Mathematics Library

We introduce weak discrete maximum principles for matrix equations associated with some elliptic problems. We also give an example on discrete maximum principles.

Publié le : 2005-01-01
Classification:  35B50,  35J15,  35J25,  39A12
@article{107947,
     author = {Mohammad Mujalli Al-Mahameed},
     title = {Weak discrete maximum principles},
     journal = {Archivum Mathematicum},
     volume = {041},
     year = {2005},
     pages = {167-173},
     zbl = {1112.35034},
     mrnumber = {2164666},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107947}
}
Al-Mahameed, Mohammad Mujalli. Weak discrete maximum principles. Archivum Mathematicum, Tome 041 (2005) pp. 167-173. http://gdmltest.u-ga.fr/item/107947/

Ciarlet P. G. Discrete maximum principles for finite difference operators, Aequationes Math. 4 (1970), 336–352. (1970) | MR 0292317

Ciarlet P. G.; Raviart P. A. Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17–31. (1973) | MR 0375802 | Zbl 0251.65069

Gilbarg D.; Trudinger N. S. Elliptic partial differential equations of second order, Springer, New York, 1983. (1983) | MR 0737190 | Zbl 0562.35001

Ishihara K. On finite element schemes of the Dirichlet problem for a system of nonlinear elliptic equations, Numer. Funct. Anal. Optim. 3 (1981), 105–136. (1981) | MR 0619817 | Zbl 0469.65071

Ishihara K. Finite element approximations applied to the nonlinear boundary value problem $\Delta u = bu^{2}$, Publ. Res. Inst. Math. Sci. 18 (1982), 17–34. (1982) | MR 0660820

Al-Mahameed M. M. A discrete maximum principle, Far East J. Appl. Math. 5 (3) (2001), 309–315. | MR 1863764 | Zbl 1112.35305

Greenspan D. Introductory numerical analysis of elliptic boundary value problems, Harper and Row, New York (1965). (1965) | MR 0179956 | Zbl 0132.36602