On left $(\theta,\varphi)$-derivations of prime rings
Ashraf, Mohammad
Archivum Mathematicum, Tome 041 (2005), p. 157-166 / Harvested from Czech Digital Mathematics Library

Let $R$ be a $2$-torsion free prime ring. Suppose that $\theta , \phi $ are automorphisms of $R$. In the present paper it is established that if $R$ admits a nonzero Jordan left $(\theta ,\theta )$-derivation, then $R$ is commutative. Further, as an application of this resul it is shown that every Jordan left $(\theta ,\theta )$-derivation on $R$ is a left $(\theta ,\theta )$-derivation on $R$. Finally, in case of an arbitrary prime ring it is proved that if $R$ admits a left $(\theta ,\phi )$-derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal of $R$, then $d=0$ on $R$.

Publié le : 2005-01-01
Classification:  16N60,  16W25
@article{107946,
     author = {Mohammad Ashraf},
     title = {On left $(\theta,\varphi)$-derivations of prime rings},
     journal = {Archivum Mathematicum},
     volume = {041},
     year = {2005},
     pages = {157-166},
     zbl = {1114.16031},
     mrnumber = {2164665},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107946}
}
Ashraf, Mohammad. On left $(\theta,\varphi)$-derivations of prime rings. Archivum Mathematicum, Tome 041 (2005) pp. 157-166. http://gdmltest.u-ga.fr/item/107946/

Ashraf M.; Rehman N. On Lie ideals and Jordan left derivation of prime rings, Arch. Math.(Brno) 36 (2000), 201–206. | MR 1785037

Ashraf M.; Rehman N.; Quadri M. A. On $(\sigma ,\tau )$- derivations in certain class of rings, Rad. Mat. 9 (1999), 187–192. (1999) | MR 1790206

Ashraf M.; Rehman N.; Quadri M. A. On Lie ideals and $(\sigma ,\tau )$-Jordan derivations on prime rings, Tamkang J. Math. 32 (2001), 247–252. | MR 1865617 | Zbl 1006.16044

Ashraf M.; Rehman N.; Shakir Ali On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math. 25 (2001), 375–382.

Awtar R. Lie and Jordan structures in prime rings with derivations, Proc. Amer. Math. Soc. 41 (1973), 67–74. (1973) | MR 0318233

Awtar R. Lie ideals and Jordan derivations of prime rings, Proc. Amer. Math. Soc. 90 (1984), 9–14. (1984) | MR 0722405 | Zbl 0528.16020

Bell H. E.; Daif M. N. On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), 337–343. (1995) | MR 1314011 | Zbl 0822.16033

Bell H. E.; Kappe L. C. Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), 339–346. (1989) | MR 1014917 | Zbl 0705.16021

Bergen J.; Herstein I. N.; Kerr J. W. Lie ideals and derivations of prime rings , J. Algebra 71 (1981), 259–267. (1981) | MR 0627439 | Zbl 0463.16023

Bresar M. Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003–1006. (1988) | MR 0929422 | Zbl 0691.16039

Bresar M.; Vukman J. Jordan $(\theta ,\phi )$-derivations, Glas. Mat., III. Ser. 26 (1991), 13–17. (1991) | MR 1269170

Bresar M.; Vukman J. On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7–16. (1990) | MR 1028284 | Zbl 0703.16020

Cairini L.; Giambruno A. Lie ideals and nil derivations, Boll. Un. Mat. Ital. 6 (1985), 497–503. (1985) | MR 0821089

Deng Q. Jordan $(\theta ,\phi )$-derivations, Glasnik Mat. 26 (1991), 13–17. (1991) | MR 1269170

Herstein I. N. Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110. (1957) | MR 0095864

Herstein I. N. Topics in ring theory, Univ. of Chicago Press, Chicago 1969. (1969) | MR 0271135 | Zbl 0232.16001

Kill-Wong Jun; Byung-Do Kim A note on Jordan left derivations, Bull. Korean Math. Soc. 33 (1996), 221–228. (1996) | MR 1405475

Posner E. C. Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. (1957) | MR 0095863

Vukman J., Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47–52. (1990) | MR 1007517 | Zbl 0697.16035

Vukman J. Jordan left derivations on semiprime rings, Math. J. Okayama Univ. 39 (1997), 1–6. (1997) | MR 1680747 | Zbl 0937.16044