We obtain the complete classification of conformally flat semi-symmetric spaces.
@article{107933, author = {Giovanni Calvaruso}, title = {Conformally flat semi-symmetric spaces}, journal = {Archivum Mathematicum}, volume = {041}, year = {2005}, pages = {27-36}, zbl = {1114.53027}, mrnumber = {2142141}, language = {en}, url = {http://dml.mathdoc.fr/item/107933} }
Calvaruso, Giovanni. Conformally flat semi-symmetric spaces. Archivum Mathematicum, Tome 041 (2005) pp. 27-36. http://gdmltest.u-ga.fr/item/107933/
Einstein-like semi-symmetric spaces, Arch. Math. (Brno) 29 (1993), 235–240. (1993) | MR 1263125 | Zbl 0807.53041
When is the unit tangent sphere bundle semi-symmetric?, preprint 2002. | MR 2075771 | Zbl 1076.53032
Riemannian manifolds of conullity two, World Scientific 1996. (1996) | MR 1462887
Semi-symmetric ball-homogeneous spaces and a volume conjecture, Bull. Austral. Math. Soc. 57 (1998), 109–115. (1998) | MR 1623824 | Zbl 0903.53031
Three-dimensional conformally flat pseudo-symmetric spaces of constant type, Arch. Math. (Brno) 36 (2000), 279–286. | MR 1811172 | Zbl 1054.53060
On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J. 9 (1975), 161–171. (1975) | MR 0074050
A note on conformally flat spaces with constant scalar curvature, Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124. (1971) | MR 0487882
Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, the local version, J. Differential Geom. 17 (1982), 531–582. (1982) | MR 0683165
An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$, Tôhoku Math. J. 24 (1972), 105–108. (1972) | MR 0319109