Conformally flat semi-symmetric spaces
Calvaruso, Giovanni
Archivum Mathematicum, Tome 041 (2005), p. 27-36 / Harvested from Czech Digital Mathematics Library

We obtain the complete classification of conformally flat semi-symmetric spaces.

Publié le : 2005-01-01
Classification:  53C15,  53C25,  53C35
@article{107933,
     author = {Giovanni Calvaruso},
     title = {Conformally flat semi-symmetric spaces},
     journal = {Archivum Mathematicum},
     volume = {041},
     year = {2005},
     pages = {27-36},
     zbl = {1114.53027},
     mrnumber = {2142141},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107933}
}
Calvaruso, Giovanni. Conformally flat semi-symmetric spaces. Archivum Mathematicum, Tome 041 (2005) pp. 27-36. http://gdmltest.u-ga.fr/item/107933/

Boeckx E. Einstein-like semi-symmetric spaces, Arch. Math. (Brno) 29 (1993), 235–240. (1993) | MR 1263125 | Zbl 0807.53041

Boeckx E.; Calvaruso G. When is the unit tangent sphere bundle semi-symmetric?, preprint 2002. | MR 2075771 | Zbl 1076.53032

Boeckx E.; Kowalski O.; And Vanhecke L. Riemannian manifolds of conullity two, World Scientific 1996. (1996) | MR 1462887

Calvaruso G.; Vanhecke L. Semi-symmetric ball-homogeneous spaces and a volume conjecture, Bull. Austral. Math. Soc. 57 (1998), 109–115. (1998) | MR 1623824 | Zbl 0903.53031

Hashimoto N.; Sekizawa M. Three-dimensional conformally flat pseudo-symmetric spaces of constant type, Arch. Math. (Brno) 36 (2000), 279–286. | MR 1811172 | Zbl 1054.53060

Kurita M. On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J. 9 (1975), 161–171. (1975) | MR 0074050

Ryan P. A note on conformally flat spaces with constant scalar curvature, Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124. (1971) | MR 0487882

Szabó Y. I. Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$, I, the local version, J. Differential Geom. 17 (1982), 531–582. (1982) | MR 0683165

Takagi H. An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$, Tôhoku Math. J. 24 (1972), 105–108. (1972) | MR 0319109