Oscillatory properties of fourth order self-adjoint differential equations
Fišnarová, Simona
Archivum Mathematicum, Tome 040 (2004), p. 457-469 / Harvested from Czech Digital Mathematics Library

Oscillation and nonoscillation criteria for the self-adjoint linear differential equation \[ (t^\alpha y^{\prime \prime })^{\prime \prime }-\frac{\gamma _{2,\alpha }}{t^{4-\alpha }}y=q(t)y,\quad \alpha \notin \lbrace 1, 3\rbrace \,, \] where \[ \gamma _{2,\alpha }=\frac{(\alpha -1)^2(\alpha -3)^2}{16}\] and $q$ is a real and continuous function, are established. It is proved, using these criteria, that the equation \[\left(t^\alpha y^{\prime \prime }\right)^{\prime \prime }-\left(\frac{\gamma _{2,\alpha }}{t^{4-\alpha }} + \frac{\gamma }{t^{4-\alpha }\ln ^2 t}\right)y = 0\] is nonoscillatory if and only if $\gamma \le \frac{\alpha ^2-4\alpha +5}{8}$.

Publié le : 2004-01-01
Classification:  34C10
@article{107927,
     author = {Simona Fi\v snarov\'a},
     title = {Oscillatory properties of fourth order self-adjoint differential equations},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {457-469},
     zbl = {1117.34038},
     mrnumber = {2129965},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107927}
}
Fišnarová, Simona. Oscillatory properties of fourth order self-adjoint differential equations. Archivum Mathematicum, Tome 040 (2004) pp. 457-469. http://gdmltest.u-ga.fr/item/107927/

Coppel W. A. Disconjugacy, Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. (1971) | MR 0460785 | Zbl 0224.34003

Došlý O. Nehari-type oscillation criteria for self-adjoint linear equations, J. Math. Anal. Appl. 182 (1994), 69–89. (1994) | MR 1265883

Došlý O. Oscillatory properties of fourth order Sturm-Liouville differential equations, Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 41 (2002), 49–59. | MR 1967340 | Zbl 1055.34065

Došlý O.; Osička J. Oscillation and nonoscillation of higher order self-adjoint differential equations, Czechoslovak Math. J. 52 (127) (2002), 833-849. | MR 1940063

Došlý O.; Osička J. Oscillatory properties of higher order Sturm-Liouville differential equations, Studies Univ. Žilina, Math. Ser. 15 (2002), 25–40. | MR 1980760 | Zbl 1062.34034

Glazman I. M. Direct Methods of Qualitative Anylysis of Singular Differential Operators, Davey, Jerusalem 1965. (1965)

Hinton D. B.; Lewis R. T. Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc. 77 (1975), 337–347. (1975) | MR 0367358 | Zbl 0298.34018