Quantum Euler-Poisson systems: Existence of stationary states
Jüngel, Ansgar ; Li, Hailiang
Archivum Mathematicum, Tome 040 (2004), p. 435-456 / Harvested from Czech Digital Mathematics Library

A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron density as a nonlinear elliptic fourth-order equation using an exponential transformation of variables.

Publié le : 2004-01-01
Classification:  35Q55,  35Q60,  76Y05,  82C10,  82D37
@article{107926,
     author = {Ansgar J\"ungel and Hailiang Li},
     title = {Quantum Euler-Poisson systems: Existence of stationary states},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {435-456},
     zbl = {1122.35140},
     mrnumber = {2129964},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107926}
}
Jüngel, Ansgar; Li, Hailiang. Quantum Euler-Poisson systems: Existence of stationary states. Archivum Mathematicum, Tome 040 (2004) pp. 435-456. http://gdmltest.u-ga.fr/item/107926/

Brezzi F.; Gasser I.; Markowich P.; Schmeiser C. Thermal equilibrium state of the quantum hydrodynamic model for semiconductor in one dimension, Appl. Math. Lett. 8 (1995), 47–52. (1995) | MR 1355150

Chen G.; Wang D. Convergence of shock schemes for the compressible Euler-Poisson equations, Comm. Math. Phys. 179 (1996), 333–364. (1996) | MR 1400743

Courant R.; Friedrichs K. O. Supersonic flow and shock waves, Springer-Verlag, New York 1976. (1976) | MR 0421279

Degond P.; Markowich P. A. On a one-dimensional steady-state hydrodynamic model, Appl. Math. Lett. 3 (1990), 25–29. (1990) | MR 1077867

Degond P.; Markowich P. A. A steady state potential flow model for semiconductors, Ann. Mat. Pura Appl. 165 (1993), 87–98. (1993) | MR 1271412

Gamba I. Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor, Comm. Partial Differential Equations 17 (1992), 553–577. (1992) | MR 1163436

Gamba I.; Jüngel A. Asymptotic limits in quantum trajectory models, Comm. Partial Differential Equations 27 (2002), 669–691. | MR 1900558

Gamba I.; Jüngel A. Positive solutions to singular second and third order differential equations for quantum fluids, Arch. Rational Mech. Anal. 156 (2001), 183–203. | MR 1816474

Gamba I.; Morawitz C. A viscous approximation for a 2D steady semiconductor or transonic gas dynamics flow: existence theorem for potential flow, Comm. Pure Appl. Math. 49 (1996), 999–1049. (1996) | MR 1404324

Gardner C. Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device, IEEE Trans. El. Dev. 38 (1991), 392–398. (1991)

Gardner C. The quantum hydrodynamic model for semiconductors devices, SIAM J. Appl. Math. 54 (1994), 409–427. (1994) | MR 1265234

Gasser I.; Jüngel A. The quantum hydrodynamic model for semiconductors in thermal equilibrium, Z. Angew. Math. Phys. 48 (1997), 45–59. (1997) | MR 1439735

Gasser I.; Lin C.-K.; Markowich P. A review of dispersive limits of the (non)linear Schrödinger-type equation, Taiwanese J. of Math. 4, (2000), 501–529. | MR 1799752

Gasser I.; Markowich P. Quantum hydrodynamics, Wigner transforms and the classical limit, Asymptot. Anal. 14 (1997), 97–116. (1997) | MR 1451208 | Zbl 0877.76087

Gasser I.; Markowich P. A.; Ringhofer C. Closure conditions for classical and quantum moment hierarchies in the small temperature limit, Transport Theory Statistic Phys. 25 (1996), 409–423. (1996) | MR 1407543 | Zbl 0871.76078

Gyi M. T.; Jüngel A. A quantum regularization of the one-dimensional hydrodynamic model for semiconductors, Adv. Differential Equations 5 (2000), 773–800. | MR 1750118 | Zbl 1174.82348

Hsiao L.; Yang T. Asymptotic of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors, J. Differential Equations 170 (2001), 472–493. | MR 1815191

Jerome J. Analysis of charge transport: a mathematical study of semiconductor devices, Springer-Verlag, Heidelberg 1996. (1996) | MR 1437143

Jüngel A. A steady-state potential flow Euler-Poisson system for charged quantum fluids, Comm. Math. Phys. 194 (1998), 463–479. (194 ) | MR 1627673

Jüngel A. Quasi-hydrodynamic semiconductor equations, Progress in Nonlinear Differential Equations, Birkhäuser, Basel 2001. | MR 1818867 | Zbl 0969.35001

Jüngel A.; Mariani M. C.; Rial D. Local existence of solutions to the transient quantum hydrodynamic equations, Math. Models Methods Appl. Sci. 12 (2002), 485–495. | MR 1899838 | Zbl 1215.81031

Jüngel A.; Li H.-L. Quantum Euler-Poisson systems: global existence and exponential decay, to appear in Quart. Appl. Math. 2005. | MR 2086047 | Zbl 1069.35012

Landau L. D.; Lifshitz E. M. Quantum mechanics: non-relativistic theory, New York, Pergamon Press 1977. (1977) | MR 0400931

Li H.-L.; Markowich P. A. A review of hydrodynamical models for semiconductors: asymptotic behavior, Bol. Soc. Brasil. Mat. (N.S.) 32 (2001), 321-342. | MR 1894562 | Zbl 0996.82064

Loffredo M.; Morato L. On the creation of quantum vortex lines in rotating HeII, Il nouvo cimento 108B (1993), 205–215. (1993)

Madelung E. Quantentheorie in hydrodynamischer Form, Z. Phys. 40 (1927), 322. (1927)

Marcati P.; Natalini R. Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129 (1995), 129–145. (1995) | MR 1328473 | Zbl 0829.35128

Markowich P.; Ringhofer C.; Schmeiser C. Semiconductor Equations, Springer, Wien 1990. (1990) | MR 1063852 | Zbl 0765.35001

Pacard F.; Unterreiter A. A variational analysis of the thermal equilibrium state of charged quantum fluids, Comm. Partial Differential Equations 20 (1995), 885–900. (1995) | MR 1326910 | Zbl 0820.35112

Shu C.-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report No. 97-65, NASA Langley Research Center, Hampton, USA 1997. (1997) | MR 1728856

Zhang B.; Jerome W. On a steady-state quantum hydrodynamic model for semiconductors, Nonlinear Anal., Theory Methods Appl. 26 (1996), 845–856. (1996) | MR 1362757 | Zbl 0882.76105