Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian
Jiang, Daqing ; Zhang, Li Li ; O'Regan, Donal ; Agarwal, Ravi P.
Archivum Mathematicum, Tome 040 (2004), p. 367-381 / Harvested from Czech Digital Mathematics Library

In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \] where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.

Publié le : 2004-01-01
Classification:  34B15,  39A11,  39A12
@article{107921,
     author = {Daqing Jiang and Li Li Zhang and Donal O'Regan and Ravi P. Agarwal},
     title = {Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {367-381},
     zbl = {1113.39022},
     mrnumber = {2129959},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107921}
}
Jiang, Daqing; Zhang, Li Li; O'Regan, Donal; Agarwal, Ravi P. Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian. Archivum Mathematicum, Tome 040 (2004) pp. 367-381. http://gdmltest.u-ga.fr/item/107921/

Agarwal R. P.; O’Regan D. Singular discrete boundary value problems, Appl. Math. Lett. 12 (1999), 127–131. (1999) | MR 1750610 | Zbl 0944.39003

Agarwal R. P.; O’Regan D. Boundary value problems for discrete equations, Appl. Math. Lett. 10 (1997), 83–89. (1997) | MR 1458158 | Zbl 0890.39001

Agarwal R. P.; O’Regan D. Singular discrete $(n,p)$ boundary value problems, Appl. Math. Lett. 12 (1999), 113–119. (1999) | MR 1751342 | Zbl 0970.39006

Agarwal R. P.; O’Regan D. Nonpositive discrete boundary value problems, Nonlinear Anal. 39 (2000), 207–215. | MR 1722094

Agarwal R. P.; O’Regan D. Existence theorem for single and multiple solutions to singular positone boundary value problems, J. Differential Equations, 175 (2001), 393–414. | MR 1855974

Agarwal R. P.; O’Regan D. Twin solutions to singular Dirichlet problems, J. Math. Anal. Appl. 240 (1999), 433–445. (1999) | MR 1731655

Agarwal R. P.; O’Regan D. Twin solutions to singular boundary value problems, Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. | MR 1664297 | Zbl 0946.34020

Agarwal R. P.; O’Regan D. Multiplicity results for singular conjugate, focal, and $(N,P)$ problems, J. Differential Equations 170 (2001), 142–156. | MR 1813103 | Zbl 0978.34018

Deimling K. Nonlinear functional analysis, Springer Verlag, 1985. (1985) | MR 0787404 | Zbl 0559.47040

Henderson J. Singular boundary value problems for difference equations, Dynam. Systems Appl. (1992), 271–282. (1992) | MR 1182649 | Zbl 0761.39002

Henderson J. Singular boundary value problems for higher order difference equations, In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. (1994) | MR 1389147

Jiang D. Q. Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs, Comput. Math. Appl. 40 (2000), 249–259. | MR 1763623 | Zbl 0976.34019

Jiang D. Q.; Pang P. Y. H.; Agarwal R. P. Upper and lower solutions method and a superlinear singular discrete boundary value problem, Dynam. Systems Appl., to appear. | MR 2370156

O’Regan D. Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic, Dordrecht, 1997. (1997) | MR 1449397 | Zbl 1077.34505