In this paper we establish the existence of single and multiple solutions to the positone discrete Dirichlet boundary value problem \[ \left\lbrace \begin{array}{l} \Delta \big [\phi (\Delta u(t-1))\big ]+ q(t) f(t,u(t))=0\,,\quad t\in \lbrace 1,2,\dots ,T\rbrace \\[3pt] u(0)=u(T+1)=0\,, \end{array} \right. \] where $\phi (s) = |s|^{p-2}s$, $p>1$ and our nonlinear term $f(t,u)$ may be singular at $u=0$.
@article{107921, author = {Daqing Jiang and Li Li Zhang and Donal O'Regan and Ravi P. Agarwal}, title = {Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian}, journal = {Archivum Mathematicum}, volume = {040}, year = {2004}, pages = {367-381}, zbl = {1113.39022}, mrnumber = {2129959}, language = {en}, url = {http://dml.mathdoc.fr/item/107921} }
Jiang, Daqing; Zhang, Li Li; O'Regan, Donal; Agarwal, Ravi P. Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimension $p$-Laplacian. Archivum Mathematicum, Tome 040 (2004) pp. 367-381. http://gdmltest.u-ga.fr/item/107921/
Singular discrete boundary value problems, Appl. Math. Lett. 12 (1999), 127–131. (1999) | MR 1750610 | Zbl 0944.39003
Boundary value problems for discrete equations, Appl. Math. Lett. 10 (1997), 83–89. (1997) | MR 1458158 | Zbl 0890.39001
Singular discrete $(n,p)$ boundary value problems, Appl. Math. Lett. 12 (1999), 113–119. (1999) | MR 1751342 | Zbl 0970.39006
Nonpositive discrete boundary value problems, Nonlinear Anal. 39 (2000), 207–215. | MR 1722094
Existence theorem for single and multiple solutions to singular positone boundary value problems, J. Differential Equations, 175 (2001), 393–414. | MR 1855974
Twin solutions to singular Dirichlet problems, J. Math. Anal. Appl. 240 (1999), 433–445. (1999) | MR 1731655
Twin solutions to singular boundary value problems, Proc. Amer. Math. Soc. 128 (7) ( 2000), 2085–2094. | MR 1664297 | Zbl 0946.34020
Multiplicity results for singular conjugate, focal, and $(N,P)$ problems, J. Differential Equations 170 (2001), 142–156. | MR 1813103 | Zbl 0978.34018
Nonlinear functional analysis, Springer Verlag, 1985. (1985) | MR 0787404 | Zbl 0559.47040
Singular boundary value problems for difference equations, Dynam. Systems Appl. (1992), 271–282. (1992) | MR 1182649 | Zbl 0761.39002
Singular boundary value problems for higher order difference equations, In Proceedings of the First World Congress on Nonlinear Analysis, (Edited by V. Lakshmikantham), Walter de Gruyter, 1994, 1139–1150. (1994) | MR 1389147
Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs, Comput. Math. Appl. 40 (2000), 249–259. | MR 1763623 | Zbl 0976.34019
Upper and lower solutions method and a superlinear singular discrete boundary value problem, Dynam. Systems Appl., to appear. | MR 2370156
Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic, Dordrecht, 1997. (1997) | MR 1449397 | Zbl 1077.34505