An operator with infinite dimensional kernel is positive iff it is a positive scalar times a certain product of three projections.
@article{107919, author = {Mohammad Sal Moslehian}, title = {On product of projections}, journal = {Archivum Mathematicum}, volume = {040}, year = {2004}, pages = {355-357}, zbl = {1109.47302}, mrnumber = {2129957}, language = {en}, url = {http://dml.mathdoc.fr/item/107919} }
Moslehian, Mohammad Sal. On product of projections. Archivum Mathematicum, Tome 040 (2004) pp. 355-357. http://gdmltest.u-ga.fr/item/107919/
Diagonal operators: dilation, sum and product, Acta Sci. Math. (Szeged) 57 (1993), No. 1-4, 125–138. (1993) | MR 1243273 | Zbl 0819.47047
Products of shifts, Duke Math. J. 39 (1972), 779–787. (1972) | MR 0313860 | Zbl 0254.47038
Products of symmetries, Bull. Amer. Math. Soc. 64 (1958), 77–78. (1958) | MR 0100225 | Zbl 0084.10602
A class of linear transformations which can be written as the product of projections, Proc. Amer. Math. Soc. 19 (1968), 739–745. (1968) | MR 0225195
Every invertible Hilbert space operator is a product of seven positive operators, Canad. Math. Bull. 38 (1995), no. 2, 230–236. (1995) | MR 1335103 | Zbl 0826.46049
On self-adjoint factorization of operators, Canad. J. Math. 21 (1969), 1421–1426. (1969) | MR 0251575 | Zbl 0188.44301
Products of hermitian matrices and symmetries, Proc. Amer. Math. Soc. 21 (1969), 369–372; 26 (1970), 701. (1969) | MR 0240116 | Zbl 0175.30703
Product of normal operators, Canad. J. Math. XL, No 6 (1988), 1322–1330. (1988) | MR 0990101
The operator factorization problems, Lin. Appl. 117 (1989), 35–63. (1989) | MR 0993030 | Zbl 0673.47018