In this paper, we extend several concepts from geometry of Banach spaces to modular spaces. With a careful generalization, we can cover all corresponding results in the former setting. Main result we prove says that if $\rho $ is a convex, $\rho $-complete modular space satisfying the Fatou property and $\rho _r$-uniformly convex for all $r>0$, C a convex, $\rho $-closed, $\rho $-bounded subset of $X_\rho $, $T:C\rightarrow C$ a $\rho $-nonexpansive mapping, then $T$ has a fixed point.
@article{107918, author = {Poom Kumam}, title = {Fixed point theorems for nonexpansive mappings in modular spaces}, journal = {Archivum Mathematicum}, volume = {040}, year = {2004}, pages = {345-353}, zbl = {1117.47045}, mrnumber = {2129956}, language = {en}, url = {http://dml.mathdoc.fr/item/107918} }
Kumam, Poom. Fixed point theorems for nonexpansive mappings in modular spaces. Archivum Mathematicum, Tome 040 (2004) pp. 345-353. http://gdmltest.u-ga.fr/item/107918/
Nonstandard methods in fixed point theory, Spinger-Verlag, Heidelberg, New York 1990. (1990) | MR 1066202 | Zbl 0713.47050
Measures of noncompactness in metric fixed point theory: Advances and Applications Topics in metric fixed point theory, Birkhäuser-Verlag, Basel, 99 (1997). (1997) | MR 1483889
Some geometrical properties and fixed point theorems in Orlicz modular spaces, J. Math. Anal. Appl. 155 No. 2 (1991), 393–412. (1991) | MR 1097290
Uniformly Lipschitzian mappings in modular function spaces, Nonlinear Analysis 40 No. 2 (2001), 267–278. | MR 1849794
Topic in metric fixed point theorem, Cambridge University Press, Cambridge 1990. (1990) | MR 1074005
Uniform convexity, Hyperbolic geometry, and nonexpansive mappings, Monographs textbooks in pure and applied mathematics, New York and Basel, 83 1984. (1984) | MR 0744194 | Zbl 0537.46001
Fixed point theory in modular function spacesm, Recent Advances on Metric Fixed Point Theorem, Universidad de Sivilla, Sivilla No. 8 (1996), 31–58. (1996) | MR 1440218
Uniform noncompact convexity, fixed point property in modular spaces, Math. Japonica 41 (1) (1994), 1–6. (1994) | MR 1305537 | Zbl 0820.47063
A convexity property in modular function spaces, Math. Japonica 44, No. 2 (1990). (1990) | MR 1416264
Fixed point property in modular function spaces, Nonlinear Analysis, 14, No. 11 (1990), 935–953. (1990) | MR 1058415
Fixed Point Property in Modular Spaces, Master Thesis, Chiang Mai University (2002), Thailand.
An introduction to Banach space theory, Graduate Text in Math. Springer-Verlag, New York 183 (1998). (1998) | MR 1650235 | Zbl 0910.46008
Orlicz spaces and Modular spaces, Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York 1034 (1983). (1983) | MR 0724434 | Zbl 0557.46020
On Modular spaces, Studia Math. 18 (1959), 591–597. (1959) | MR 0101487 | Zbl 0099.09202
Modular semi-ordered spaces, Tokyo, (1950). (1950)