The Neumann problem for quasilinear differential equations
Cardinali, Tiziana ; Papageorgiou, Nikolaos S. ; Servadei, Raffaella
Archivum Mathematicum, Tome 040 (2004), p. 321-333 / Harvested from Czech Digital Mathematics Library

In this note we prove the existence of extremal solutions of the quasilinear Neumann problem $-( \vert x^{^{\prime }}(t) \vert ^{p-2}x^{^{\prime }}(t))^{^{\prime }} = f(t,x(t),x ^{^{\prime }}(t))$, a.e. on $T$, $x^{^{\prime }}(0) = x^{^{\prime }}(b) =0$, $2\le p < \infty $ in the order interval $[\psi ,\varphi ]$, where $\psi $ and $\varphi $ are respectively a lower and an upper solution of the Neumann problem.

Publié le : 2004-01-01
Classification:  34B15,  35J25,  35J60,  35J65
@article{107916,
     author = {Tiziana Cardinali and Nikolaos S. Papageorgiou and Raffaella Servadei},
     title = {The Neumann problem for quasilinear differential equations},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {321-333},
     zbl = {1122.35030},
     mrnumber = {2129954},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107916}
}
Cardinali, Tiziana; Papageorgiou, Nikolaos S.; Servadei, Raffaella. The Neumann problem for quasilinear differential equations. Archivum Mathematicum, Tome 040 (2004) pp. 321-333. http://gdmltest.u-ga.fr/item/107916/

Boccardo L.; Drábek P.; Giachetti D.; Kučera M. Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. 10 (1986), 1083–1103. (1986) | MR 0857742

Brézis H. Analyse functionelle: Théorie et applications, Masson, Paris 1983. (1983) | MR 0697382

Del Pino M.; Elgueta M.; Manasevich R. A homotopic deformation along p of a Leray-Schauder degree result and existence for $(\vert u^{^{\prime }}(t) \vert ^{p-2}u^{^{\prime }}(t))^{^{\prime }} + f(t,u(t)) = 0, u(0)=u(T)=0, p>1)$, J. Differential Equations 80 (1989), 1–13. (1989) | MR 1003248

Drábek P. Solvability of boundary value problems with homogeneous ordinary differential operator, Rend. Istit. Mat. Univ. Trieste 18 (1986), 105–125. (1986) | MR 0928322

Dunford N.; Schwartz J. T. Linear operators. Part I: General theory, Interscience Publishers, New York 1958–1971. (1958) | MR 1009162

Gao W.; Wang J. A nonlinear second order periodic boundary value problem with Carathéodory functions, Ann. Polon. Math. LXVII. 3 (1995), 283–291. (1995) | MR 1356797

Gilbarg D.; Trudinger N. Elliptic partial differential equations of second order, Springer-Verlag, Berlin 1983. (1983) | MR 0737190 | Zbl 0562.35001

Dugundji J.; Granas A. Fixed point theory, Vol. I, Monogr. Mat. PWN, Warsaw 1992. (1992)

Guo Z. Boundary value problems of a class of quasilinear ordinary differential equations, Differential Integral Equations 6, No. 3 (1993), 705–719. (1993) | MR 1202567 | Zbl 0784.34018

Halidias N.; Papageorgiou N. S. Existence of solutions for nonlinear parabolic problems, Arch. Math. (Brno) 35 (1999), 255–274. (1999) | MR 1725842 | Zbl 1046.35054

Hu S.; Papageorgiou N. S. Handbook of multivalued analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997. (1997) | MR 1485775 | Zbl 0887.47001

Marcus M.; Mizel V. J. Absolute continuity on tracks and mapping of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294–320. (1972) | MR 0338765

O’Regan D. Some General existence principles and results for $(\phi (y^{^{\prime }}))= qf(t,y,y^{^{\prime }}), 0, SIAM J. Math. Anal. 24 No. 30 (1993), 648–668. (1993) | MR 1215430

Pascali D.; Sburlan S. Nonlinear mapping of monotone type, Editura Academiei, Bucuresti, Romania 1978. (1978) | MR 0531036

Peressini A. L. Ordered topological vector spaces, Harper & Row, New York, Evanstone, London 1967. (1967) | MR 0227731 | Zbl 0169.14801

Wang J.; Jiang D. A unified approach to some two-point, three-point and four-point boundary value problems with Carathéodory functions, J. Math. Anal. Appl. 211 (1997), 223–232. (1997) | MR 1460168 | Zbl 0880.34019

Zeidler E. Nonlinear functional analysis and its applications II, Springer-Verlag, New York 1990. (1990) | MR 0816732 | Zbl 0684.47029