Finiteness of a class of Rabinowitsch polynomials
Schlage-Puchta, Jan-Christoph
Archivum Mathematicum, Tome 040 (2004), p. 259-261 / Harvested from Czech Digital Mathematics Library

We prove that there are only finitely many positive integers $m$ such that there is some integer $t$ such that $|n^2+n-m|$ is 1 or a prime for all $n\in [t+1, t+\sqrt{m}]$, thus solving a problem of Byeon and Stark.

Publié le : 2004-01-01
Classification:  11C08,  11R11,  11R29
@article{107908,
     author = {Jan-Christoph Schlage-Puchta},
     title = {Finiteness of a class of Rabinowitsch polynomials},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {259-261},
     zbl = {1122.11070},
     mrnumber = {2107020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107908}
}
Schlage-Puchta, Jan-Christoph. Finiteness of a class of Rabinowitsch polynomials. Archivum Mathematicum, Tome 040 (2004) pp. 259-261. http://gdmltest.u-ga.fr/item/107908/

Byeon D.; Stark H. M. On the Finiteness of Certain Rabinowitsch Polynomials, J. Number Theory 94 (2002), 177–180. | Article | MR 1904967 | Zbl 1033.11010

Byeon D.; Stark H. M. On the Finiteness of Certain Rabinowitsch Polynomials. II, J. Number Theory 99 (2003), 219–221. | Article | MR 1957253 | Zbl 1033.11010

Heath-Brown D. R. Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265–338. (1992) | MR 1143227 | Zbl 0739.11033

Rabinowitsch G. Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Mathematik 142 (1913), 153–164. (1913)