In this paper we establish some new characterizations for $Q$-rings and Noetherian $Q$-rings.
@article{107907, author = {C. Jayaram}, title = {Almost $Q$-rings}, journal = {Archivum Mathematicum}, volume = {040}, year = {2004}, pages = {249-257}, zbl = {1112.13004}, mrnumber = {2107019}, language = {en}, url = {http://dml.mathdoc.fr/item/107907} }
Jayaram, C. Almost $Q$-rings. Archivum Mathematicum, Tome 040 (2004) pp. 249-257. http://gdmltest.u-ga.fr/item/107907/
Multiplication ideals, Multiplication rings and the ring $R(X)$, Canad. J. Math. XXVIII (1976), 760–768. (1976) | MR 0424794 | Zbl 0343.13009
Some remarks on multiplication ideals, Math. Japon. 25 (1980), 463–469. (1980) | MR 0594548 | Zbl 0446.13001
Noetherian rings in which every ideal is a product of primary ideals, Canad. Math. Bull. 23 (4), (1980), 457–459. (1980) | MR 0602601 | Zbl 0445.13006
Commutative rings in which every ideal is a product of primary ideals, J. Algebra 106 (1987), 528–535. (1987) | MR 0880975 | Zbl 0607.13004
On primary factorizations, J. Pure Appl. Algebra 54 (1988), 141–154. (1988) | MR 0963540 | Zbl 0665.13004
A note on quasi-principal ideals, Tamkang J. Math. (1982), 77–82. (1982) | MR 0835192
Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971), 273–284. (1971) | MR 0280472 | Zbl 0223.13017
The Laskerian property in commutative rings, J. Algebra 72 (1981), 101–114. (1981) | MR 0634618 | Zbl 0498.13001
Multiplicative theory of ideals, Academic Press, New York 1971. (1971) | MR 0414528 | Zbl 0237.13002
A characterization of general ZPI-rings, Proc. Amer. Math. Soc. 32 (1972), 376–380. (1972) | MR 0294312
Principal elements of lattices of ideals, Proc. Amer. Math. Soc. 30 (1971), 43–45. (1971) | MR 0279080 | Zbl 0218.13001
Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631–639. (1968) | MR 0229627 | Zbl 0172.32202