Jets of a manifold $M$ can be described as ideals of $\mathcal {C}^\infty (M)$. This way, all the usual processes on jets can be directly referred to that ring. By using this fact, we give a very simple construction of the contact system on jet spaces. The same way, we also define the contact system for the recently considered $A$-jet spaces, where $A$ is a Weil algebra. We will need to introduce the concept of derived algebra.
@article{107906, author = {R. J. Alonso-Blanco and J. Mu\~noz-D\'\i az}, title = {The contact system for $A$-jet manifolds}, journal = {Archivum Mathematicum}, volume = {040}, year = {2004}, pages = {233-248}, zbl = {1112.58002}, mrnumber = {2107018}, language = {en}, url = {http://dml.mathdoc.fr/item/107906} }
Alonso-Blanco, R. J.; Muñoz-Díaz, J. The contact system for $A$-jet manifolds. Archivum Mathematicum, Tome 040 (2004) pp. 233-248. http://gdmltest.u-ga.fr/item/107906/
Jet manifold associated to a Weil bundle, Arch. Math. (Brno) 36 (2000), 195–199. (199.) | MR 1785036
On the local structure of $A$-jet manifolds, In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math Publ. 3, Silesian Univ. Opava 2001, 51–61. | MR 1978762
On the reduction of some systems of partial differential equations to first order systems with only one unknown function, In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math. Publ. 3, Silesian Univ. Opava 2001, 187–195. (195.) | MR 1978775
Affine structure on Weil bundles, Nagoya Math. J. 158 (2000), 99–106. | MR 1766571 | Zbl 0961.58002
Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) | MR 1202431
Theorie der Transformationsgruppen, Leipzig, 1888. (Second edition in Chelsea Publishing Company, New York 1970). (1970) | Zbl 0248.22009
The canonical isomorphism between the prolongation of the symbols of a nonlinear Lie equation and its attached linear Lie equation, in Proccedings of Diff. Geom. and its Appl. (Brno, 1998), Masaryk Univ., Brno 1999, 255–261. (1998) | MR 1708913
Integrability of Lie equations and pseudogroups, J. Math. Anal. Appl. 252 (2000), 32–49. | MR 1797843 | Zbl 0973.58008
Weil bundles and jet spaces, Czechoslovak Math. J. 50 (125) (2000), no. 4, 721–748. | MR 1792967 | Zbl 1079.58500
A remark on Goldschmidt’s theorem on formal integrability, J. Math. Anal. Appl. 254 (2001), 275–290. | MR 1807901 | Zbl 0999.35003
The contact system on the $(m,l)$-jet spaces, Arch. Math. (Brno) 37 (2001), 291–300. | MR 1879452
On the finiteness of differential invariants, J. Math. Anal. Appl. 284 (2003), No. 1, 266–282. | MR 1996132 | Zbl 1070.58005
Sobre los espacios de jets y los fundamentos de la teoría de los sistemas de ecuaciones en derivadas parciales, Ph. D. Thesis, Salamanca, 1990. (1990)
Théorie des points proches sur les variétés différentiables, Colloque de Géometrie Différentielle, C. N. R. S. (1953), 111–117. (1953) | MR 0061455 | Zbl 0053.24903