The contact system for $A$-jet manifolds
Alonso-Blanco, R. J. ; Muñoz-Díaz, J.
Archivum Mathematicum, Tome 040 (2004), p. 233-248 / Harvested from Czech Digital Mathematics Library

Jets of a manifold $M$ can be described as ideals of $\mathcal {C}^\infty (M)$. This way, all the usual processes on jets can be directly referred to that ring. By using this fact, we give a very simple construction of the contact system on jet spaces. The same way, we also define the contact system for the recently considered $A$-jet spaces, where $A$ is a Weil algebra. We will need to introduce the concept of derived algebra.

Publié le : 2004-01-01
Classification:  58A20,  58A32
@article{107906,
     author = {R. J. Alonso-Blanco and J. Mu\~noz-D\'\i az},
     title = {The contact system for $A$-jet manifolds},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {233-248},
     zbl = {1112.58002},
     mrnumber = {2107018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107906}
}
Alonso-Blanco, R. J.; Muñoz-Díaz, J. The contact system for $A$-jet manifolds. Archivum Mathematicum, Tome 040 (2004) pp. 233-248. http://gdmltest.u-ga.fr/item/107906/

Alonso Blanco R. J. Jet manifold associated to a Weil bundle, Arch. Math. (Brno) 36 (2000), 195–199. (199.) | MR 1785036

Alonso Blanco R. J. On the local structure of $A$-jet manifolds, In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math Publ. 3, Silesian Univ. Opava 2001, 51–61. | MR 1978762

Jiménez S.; Muñoz J.; Rodríguez J. On the reduction of some systems of partial differential equations to first order systems with only one unknown function, In: Proceedings of Diff. Geom. and its Appl. (Opava, 2002), Math. Publ. 3, Silesian Univ. Opava 2001, 187–195. (195.) | MR 1978775

Kolář I. Affine structure on Weil bundles, Nagoya Math. J. 158 (2000), 99–106. | MR 1766571 | Zbl 0961.58002

Kolář I.; Michor P. W.; Slovák J. Natural Operations in Differential Geometry, Springer-Verlag, 1993. (1993) | MR 1202431

Lie S. Theorie der Transformationsgruppen, Leipzig, 1888. (Second edition in Chelsea Publishing Company, New York 1970). (1970) | Zbl 0248.22009

Muñoz J.; Muriel J.; Rodríguez J. The canonical isomorphism between the prolongation of the symbols of a nonlinear Lie equation and its attached linear Lie equation, in Proccedings of Diff. Geom. and its Appl. (Brno, 1998), Masaryk Univ., Brno 1999, 255–261. (1998) | MR 1708913

Muñoz J.; Muriel J.; Rodríguez J. Integrability of Lie equations and pseudogroups, J. Math. Anal. Appl. 252 (2000), 32–49. | MR 1797843 | Zbl 0973.58008

Muñoz J.; Muriel J.; Rodríguez J. Weil bundles and jet spaces, Czechoslovak Math. J. 50 (125) (2000), no. 4, 721–748. | MR 1792967 | Zbl 1079.58500

Muñoz J.; Muriel J.; Rodríguez J. A remark on Goldschmidt’s theorem on formal integrability, J. Math. Anal. Appl. 254 (2001), 275–290. | MR 1807901 | Zbl 0999.35003

Muñoz J.; Muriel J.; Rodríguez J. The contact system on the $(m,l)$-jet spaces, Arch. Math. (Brno) 37 (2001), 291–300. | MR 1879452

Muñoz J.; Muriel J.; Rodríguez J. On the finiteness of differential invariants, J. Math. Anal. Appl. 284 (2003), No. 1, 266–282. | MR 1996132 | Zbl 1070.58005

Rodríguez J. Sobre los espacios de jets y los fundamentos de la teoría de los sistemas de ecuaciones en derivadas parciales, Ph. D. Thesis, Salamanca, 1990. (1990)

Weil A. Théorie des points proches sur les variétés différentiables, Colloque de Géometrie Différentielle, C. N. R. S. (1953), 111–117. (1953) | MR 0061455 | Zbl 0053.24903