The work characterizes when is the equation $ y^{ (n) } + \mu p(x) y = 0 $ eventually disconjugate for every value of $ \mu $ and gives an explicit necessary and sufficient integral criterion for it. For suitable integers $ q $, the eventually disconjugate (and disfocal) equation has 2-dimensional subspaces of solutions $ y $ such that $ y^{ (i) } > 0 $, $ i = 0, \ldots , q-1 $, $ (-1)^{i-q} y^{ (i) } > 0 $, $ i = q, \ldots , n $. We characterize the “smallest” of such solutions and conjecture the shape of the “largest” one. Examples demonstrate that the estimates are sharp.
@article{107900, author = {Uri Elias}, title = {Eventual disconjugacy of $y^{(n)} + \mu p(x) y = 0$ for every $\mu $}, journal = {Archivum Mathematicum}, volume = {040}, year = {2004}, pages = {193-200}, zbl = {1116.34317}, mrnumber = {2068690}, language = {en}, url = {http://dml.mathdoc.fr/item/107900} }
Elias, Uri. Eventual disconjugacy of $y^{(n)} + \mu p(x) y = 0$ for every $\mu $. Archivum Mathematicum, Tome 040 (2004) pp. 193-200. http://gdmltest.u-ga.fr/item/107900/
The asymptotic solution of linear differential systems, University Press, Oxford, 1989. (1989) | MR 1006434 | Zbl 0674.34045
Oscillation theory of two-term differential equations, Kluwer Academic Publishers, Dordrecht, 1997. (1997) | MR 1445292 | Zbl 0878.34022
Comparison theorems for disfocality and disconjugacy of differential equations, SIAM J. Math. Anal. 15 (1984), 922–931. (1984) | MR 0755852 | Zbl 0554.34021
Asymptotic properties of solutions of nonautonomous ordinary differential equations, Kluwer Academic Publishers, Dordrecht, 1993. (1993) | MR 1220223
Asymptotic properties of nonoscillatory solutions of higher order differential equations, Pacific J. Math. 93 (1981), 107–114. (1981) | MR 0621601 | Zbl 0488.34046
Problems and theorems in analysis, Springer-Verlag, Berlin, 1972. (1972)