A nonlinear differential equation involving reflection of the argument
Ma, To Fu ; Miranda, E. S. ; de Souza Cortes, M. B.
Archivum Mathematicum, Tome 040 (2004), p. 63-68 / Harvested from Czech Digital Mathematics Library

We study the nonlinear boundary value problem involving reflection of the argument \[ -M\Big (\int _{-1}^1\vert u^{\prime }(s)\vert ^2\,ds\Big )\,u^{\prime \prime }(x) = f\big (x,u(x),u(-x)\big ) \quad \quad x \in [-1,1]\,, \] where $M$ and $f$ are continuous functions with $M>0$. Using Galerkin approximations combined with the Brouwer’s fixed point theorem we obtain existence and uniqueness results. A numerical algorithm is also presented.

Publié le : 2004-01-01
Classification:  34B15
@article{107891,
     author = {To Fu Ma and E. S. Miranda and M. B. de Souza Cortes},
     title = {A nonlinear differential equation involving reflection of the argument},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {63-68},
     zbl = {1116.34309},
     mrnumber = {2054873},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107891}
}
Ma, To Fu; Miranda, E. S.; de Souza Cortes, M. B. A nonlinear differential equation involving reflection of the argument. Archivum Mathematicum, Tome 040 (2004) pp. 63-68. http://gdmltest.u-ga.fr/item/107891/

Arosio A.; Panizzi S. On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305–330. (1996) | MR 1333386 | Zbl 0858.35083

Chipot M.; Rodrigues J. F. On a class of nonlinear nonlocal elliptic problems, RAIRO Modél. Math. Anal. Numér. 26 (1992), 447–467. (1992) | MR 1160135

Gupta C. P. Existence and uniqueness theorems for boundary value problems involving reflection of the argument, Nonlinear Anal. 11 (1987), 1075–1083. (1987) | MR 0907824 | Zbl 0632.34069

Hai D. D. Two point boundary value problem for differential equations with reflection of argument, J. Math. Anal. Appl. 144 (1989), 313–321. (1989) | MR 1027038 | Zbl 0699.34017

Kesavan S. Topics in Functional Analysis and Applications, Wiley Eastern, New Delhi, 1989. (1989) | MR 0990018 | Zbl 0666.46001

Ma T. F. Existence results for a model of nonlinear beam on elastic bearings, Appl. Math. Lett. 13 (2000), 11–15. | MR 1760256 | Zbl 0965.74030

O’Regan D. Existence results for differential equations with reflection of the argument, J. Austral. Math. Soc. Ser. A 57 (1994), 237–260. (1994) | MR 1288675 | Zbl 0818.34037

Sharma R. K. Iterative solutions to boundary-value differential equations involving reflection of the argument, J. Comput. Appl. Math. 24 (1988), 319–326. (1988) | MR 0974020 | Zbl 0664.65080

Wiener J.; Aftabizadeh A. R. Boundary value problems for differential equations with reflection of the argument, Int. J. Math. Math. Sci. 8 (1985), 151–163. (1985) | MR 0786960 | Zbl 0583.34055