In this note we discuss the geometrical relationship between bi-Hamiltonian systems and bi-differential calculi, introduced by Dimakis and Möller–Hoissen.
@article{107886,
author = {Partha Guha},
title = {A note on bidifferential calculi and bihamiltonian systems},
journal = {Archivum Mathematicum},
volume = {040},
year = {2004},
pages = {17-22},
zbl = {1110.37043},
mrnumber = {2054868},
language = {en},
url = {http://dml.mathdoc.fr/item/107886}
}
Guha, Partha. A note on bidifferential calculi and bihamiltonian systems. Archivum Mathematicum, Tome 040 (2004) pp. 17-22. http://gdmltest.u-ga.fr/item/107886/
Bi-Differential Calculi and bi-Hamiltonian systems, J. Phys. A 33 (2000), 177–180. | MR 1767035 | Zbl 0989.37063
Bi-differential calculi and integrable models, J. Phys. A 33 (2000), 957-974. | MR 1748429 | Zbl 1043.37508
Bicomplex formulation and Moyal deformation of 2+1-dimensional Fordy-Kulish systems, nlin.SI/0008016, and the references therein. | Zbl 1103.37309
A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19, No. 5 (1978), 1156–1162. (19, ) | MR 0488516
Eight lectures on integrable systems, Integrability of nonlinear systems, Proceedings Pondicherry, 1996, Edited by Y. Kosmann-Schwarzbach et. al., Lecture Notes in Phys. 495, Springer, Berlin, 1997, 256–296,. (1996) | MR 1636296
A generalization of Hamiltonian mechanics, J. Geom. Phys. 2, No. 2 (1985), 67–82. (1985) | MR 0845468 | Zbl 0587.58004