A note on bidifferential calculi and bihamiltonian systems
Guha, Partha
Archivum Mathematicum, Tome 040 (2004), p. 17-22 / Harvested from Czech Digital Mathematics Library

In this note we discuss the geometrical relationship between bi-Hamiltonian systems and bi-differential calculi, introduced by Dimakis and Möller–Hoissen.

Publié le : 2004-01-01
Classification:  37J35,  53D17
@article{107886,
     author = {Partha Guha},
     title = {A note on bidifferential calculi and bihamiltonian systems},
     journal = {Archivum Mathematicum},
     volume = {040},
     year = {2004},
     pages = {17-22},
     zbl = {1110.37043},
     mrnumber = {2054868},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107886}
}
Guha, Partha. A note on bidifferential calculi and bihamiltonian systems. Archivum Mathematicum, Tome 040 (2004) pp. 17-22. http://gdmltest.u-ga.fr/item/107886/

Crampin M.; Sarlet W.; Thompson G. Bi-Differential Calculi and bi-Hamiltonian systems, J. Phys. A 33 (2000), 177–180. | MR 1767035 | Zbl 0989.37063

Dimakis A.; Müller–Hoissen F. Bi-differential calculi and integrable models, J. Phys. A 33 (2000), 957-974. | MR 1748429 | Zbl 1043.37508

Dimakis A.; Müller-Hoissen F. Bicomplex formulation and Moyal deformation of 2+1-dimensional Fordy-Kulish systems, nlin.SI/0008016, and the references therein. | Zbl 1103.37309

Magri F. A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19, No. 5 (1978), 1156–1162. (19, ) | MR 0488516

Magri F. Eight lectures on integrable systems, Integrability of nonlinear systems, Proceedings Pondicherry, 1996, Edited by Y. Kosmann-Schwarzbach et. al., Lecture Notes in Phys. 495, Springer, Berlin, 1997, 256–296,. (1996) | MR 1636296

Michor P. A generalization of Hamiltonian mechanics, J. Geom. Phys. 2, No. 2 (1985), 67–82. (1985) | MR 0845468 | Zbl 0587.58004