On the $H$-property of some Banach sequence spaces
Suantai, Suthep
Archivum Mathematicum, Tome 039 (2003), p. 309-316 / Harvested from Czech Digital Mathematics Library

In this paper we define a generalized Cesàro sequence space $\operatorname{ces\,}(p)$ and consider it equipped with the Luxemburg norm under which it is a Banach space, and we show that the space $\operatorname{ces\,}(p)$ posses property (H) and property (G), and it is rotund, where $p = (p_k)$ is a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in N$.

Publié le : 2003-01-01
Classification:  46B20,  46B45
@article{107879,
     author = {Suthep Suantai},
     title = {On the $H$-property of some Banach sequence spaces},
     journal = {Archivum Mathematicum},
     volume = {039},
     year = {2003},
     pages = {309-316},
     zbl = {1115.46012},
     mrnumber = {2032104},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107879}
}
Suantai, Suthep. On the $H$-property of some Banach sequence spaces. Archivum Mathematicum, Tome 039 (2003) pp. 309-316. http://gdmltest.u-ga.fr/item/107879/

Geometry of Orlicz spaces, Dissertationes Math., 1996, pp. 356. (1996) | MR 1410390

On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged ) 65 (1999), 179–187. (1999) | MR 1702144

On some local geometry of Orlicz sequence spaces equipped the Luxemburg norms, Acta Math. Hungar. 80 (1-2) (1998), 143–154. (1998) | MR 1624558

Banach-Saks property in some Banach sequence spaces, Annales Math. Polonici 65 (1997), 193–202. (1997) | MR 1432051

Banach-Saks property and property ($\beta $) in Cesàro sequence spaces, SEA. Bull. Math. 24 (2000), 201–210. (2000) | MR 1810056

Geometry of Banach Spaces - Selected Topics, Springer-Verlag, 1984. (1984) | MR 0461094

Extreme and exposed points in Orlicz spaces, Canad. J. Math. 44 (1992), 505–515. (1992) | MR 1176367

Orlicz spaces without strongly extreme points and without H-points, Canad. Math. Bull. 35 (1992), 1–5. (1992) | MR 1222531

On some convexity properties of Orlicz sequence spaces, Math. Nachr. 186 (1997), 167–185. (1997) | MR 1461219

Cesàro sequence spaces, Math. Chronicle, New Zealand 13 (1984), 29–45. (1984) | MR 0769798 | Zbl 0568.46006

Characterization of denting points, Proc. Amer. Math. Soc. 102 (1988), 526–528. (1988) | MR 0928972

Method of sequence spaces, Guangdong of Science and Technology Press (1996 (in Chinese)). (1996 (in Chinese))

Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, (1983). ((1983)) | MR 0724434 | Zbl 0557.46020

H-points and Denting Points in Orlicz Spaces, Comment. Math. Prace Mat. 33 (1993), 135–151. (1993) | MR 1269408

On geometric properties of some Banach sequence spaces, Thesis for the degree of Master of Science in Mathematics, Chiang Mai University, 2000. (2000)

Cesàro sequence spaces, Tamkang J. Math. 1 (1970), 143–150. (1970)