In this paper we give necessary and sufficient conditions for uniform exponential instability of evolution families in Banach spaces, in terms of Banach function spaces. Versions of some well-known theorems due to Datko, Neerven, Rolewicz and Zabczyk, are obtained for the case of uniform exponential instability of evolution families.
@article{107875, author = {Mihail Megan and Adina Lumini\c ta Sasu and Bogdan Sasu}, title = {Banach function spaces and exponential instability of evolution families}, journal = {Archivum Mathematicum}, volume = {039}, year = {2003}, pages = {277-286}, zbl = {1116.34328}, mrnumber = {2028738}, language = {en}, url = {http://dml.mathdoc.fr/item/107875} }
Megan, Mihail; Sasu, Adina Luminiţa; Sasu, Bogdan. Banach function spaces and exponential instability of evolution families. Archivum Mathematicum, Tome 039 (2003) pp. 277-286. http://gdmltest.u-ga.fr/item/107875/
Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach space, J. Differential Equations 120 (1995), 429–477. (1995) | MR 1347351
Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys Monogr. 70, Amer. Math. Soc., 1999. (1999) | MR 1707332 | Zbl 0970.47027
Stability of Solutions of Differential Equations in Banach Spaces, Transl. Math. Monogr. 43, Amer. Math. Soc., Providence, R.I., 1974. (1974) | MR 0352639
Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428–445. (1972) | MR 0320465 | Zbl 0241.34071
Banach Lattices, Springer Verlag, Berlin, Heidelberg, New York, 1991. (1991) | MR 1128093 | Zbl 0743.46015
On uniform exponential stability of evolution families, Riv. Mat. Univ. Parma 4 (2001), 27–43. | MR 1878009 | Zbl 1003.34045
Nonuniform exponential instability of evolution operators in Banach spaces, Glas. Mat. Ser. III 56 (2001), 287–295. | MR 1884449
On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations Operator Theory 44 (2002), 71–78. | MR 1913424 | Zbl 1034.34056
On uniform exponential stability of linear skew- -product semiflows in Banach spaces, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154. | MR 1905653 | Zbl 1032.34046
Discrete admissibility and exponential dichotomy for evolution families, Discrete Contin. Dynam. Systems 9 (2003), 383–397. | MR 1952381 | Zbl 1032.34048
Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows, Bull. Belg. Mat. Soc. Simon Stevin 10 (2003), 1–21. | MR 2032321 | Zbl 1045.34022
Perron conditions for uniform exponential expansiveness of linear skew-product flows, Monatsh. Math. 138 (2003), 145–157. | MR 1964462 | Zbl 1023.34043
Exponential expansiveness and complete admissibility for evolution families, Czech. Math. J. 53 (2003). | MR 2086730 | Zbl 1080.34546
Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows, accepted for publication in Integral Equations Operator Theory. | MR 2105960 | Zbl 1064.34035
Theorems of Perron type for uniform exponential stability of linear skew-product semiflows, accepted for publication in Dynam. Contin. Discrete Impuls. Systems. | Zbl 1079.34047
Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line, Integral Equations Operator Theory 32 (1998), 332–353. (1998) | MR 1652689 | Zbl 0977.34056
Exponential stability of operators and operator semigroups, J. Funct. Anal. 130 (1995), 293–309. (1995) | MR 1335382 | Zbl 0832.47034
The Asymptotic Behaviour of Semigroups of Linear Operators, Operator Theory Adv. Appl. 88, Birkhäuser, Bassel, 1996. (1996) | MR 1409370 | Zbl 0905.47001
On uniform N - equistability, J. Math. Anal. Appl. 115 (1986), 434–441. (1986) | MR 0836237 | Zbl 0597.34064
Remarks on the control of discrete-time distributed parameter systems, SIAM J. Control Optim. 12 (1994), 721–735. (1994) | MR 0410506